首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultraviolet fluorescence of Nd3+ ions induced by triphotonic excitation process was studied in Nd-doped LiYF4, LiLuF4 and BaY2F8 crystals using a technique of time-resolved spectroscopy. The observed ultraviolet luminescence was due to transitions between the bottom of 4f25d configuration and 4f3 states of Nd3+ ions. Narrow emission lines superposed to the broadband emissions were observed. A detailed analysis of luminescence spectrum revealed that the narrow emissions are due to parity and spin allowed radiative transitions from the Stark levels of 4K11/2(5d) state created by the electrostatic interaction between the 5d electron and the two electrons of the 4f2 configuration. The narrow emissions are related to the high spin state (S=3/2) which gives f-f characteristics to the f-d broadband emissions. The narrow emissions superposed to the wide emission correspond to 18%, 34% and 43% of the integrated broadband emission at 262 nm observed in LiYF4, LiLuF4 and BaY2F8 crystals, respectively. Although the 5d-4f2 interaction is observed to be weaker than 5d-crystal field interaction, it is stronger enough to select only the radiative transitions from 4f25d configuration to 4f3 states that preserves the total spin S=3/2.  相似文献   

2.
A strong, sharp resonance enhancement of 4f photoemission has been observed on SmS(100) surfaces for photon energies in the region of the 4d-4f transitions at about 126 eV. The discrete final state reached via the excitation hν+4d104f6→4d94f7 autoionizes primarely via a super Coster-Kronig transition of the type 4d94f7→4d104f5 + unbound electron. Other decay channels, e.g, Sm 5p emission, as well as a surface induced binding energy shift in the Sm3+ final state are identified and discussed.  相似文献   

3.
Thermal quenching of 5d-4f luminescence from Nd3+, Er3+ and Tm3+ ions doped into KYF4 crystals has been investigated in the temperature range up to ∼750 K where this luminescence is completely quenched. The obtained temperatures of thermal quenching (Tq) are ∼270, 495, 450 K for Nd3+, Er3+, Tm3+, respectively. At high temperatures, thermal quenching of 5d-4f luminescence from Nd3+ and Er3+ is accompanied by the appearance of 4f-4f luminescence from the lower-energy 4f levels. It has been shown that the dominating mechanism of thermal quenching for Nd3+ and Er3+ ions is thermally stimulated non-radiative transitions (intersystem crossing) from the 5d states to lower-energy 4f levels, namely 2G(2)9/2 and 2F(2)7/2, respectively, whereas for the Tm3+ ion, thermally stimulated ionization of 5d electrons to the conduction band states is responsible for thermal quenching of 5d-4f luminescence. The energy gap between the lowest Tm3+ 5d level and the bottom of the KYF4 conduction band has been estimated to be 0.66 eV.  相似文献   

4.
The probabilities of the 4f 136p→4f 135d lectric dipole transitions and the lifetimes of levels of the 4f 136p and 4f 135d configurations are calculated for spectra of ions Yb III, Lu IV, Hf V, and Ta VI of the erbium isoelectronic sequence. The wave functions of the intermediate coupling scheme, necessary for calculating the relative line strengths, are obtained semiempirically from experimentally measured energy intervals between fine-structure levels. To pass to the absolute values, the radial integrals of transitions, evaluated with the Hartree-Fock functions, are used.  相似文献   

5.
《Current Applied Physics》2018,18(4):437-446
Nanopowders of YPO4 phosphors with different Pr3+doping were successfully prepared by a sol gel method under different synthesis conditions. The crystallite size and strain show a strong dependence on the Pr3+ doping concentration and on the annealing temperature. By annealing at 300 °C one can obtain the xenotime structure of the pure YPO4. The crystallite size can be controlled by controlling the annealing temperature and it increases with increasing the annealing temperature. The room temperature inter-configurational 4f2 ↔ 4f5d and intra-configurational 4f2↔ 4f2 emission-excitation transitions spectra are measured and investigated. Upon 4f2 → 4f5d excitation transition, all the samples present broad intense emission bands attributed to 4f5d → 4f2 emission transitions and peaks in red region assigned to 1D23H4 transition as photon cascade emission phenomena (PCE). The presence of only 1D23H4 transition is discussed. In addition, the 1D2 energy level lifetimes as well as the refractive indexes were determined and discussed.  相似文献   

6.
Recent data on cascade transitions in the 4f shell of the Pr3+ ion in various matrices are analyzed. Spectral and kinetic characteristics of LaF3-LiF:Pr and SrAl12O19:Pr phosphors, which show photon cascade emission, were investigated. The emission intensities in the first (1 S1 I 6 transitions) and the second (transitions from the 3 P 0 level to the 3 H and 3 F multiplets) cascade stages were measured and the temperature dependences of the intensities of the main emission lines and their kinetic characteristics were determined. The following parameters of SrAl12O19:Pr were found: the band gap width (7.5 eV), the energy gap between the 1 S 0, 4f and 5d levels (0.24 eV), and the characteristics of the 4f→5d band (6.0–7.5 eV) of the Pr3+ luminescence excitation. It is shown that the LaF3-LiF:Pr compound has a number of specific features in comparison with other Pr3+-doped phosphors.  相似文献   

7.
Time-resolved emission and excitation spectra as well as emission decay kinetics of CaF2, SrF2, BaF2 doped with HoF3 were investigated. Intensive emission bands near 168 nm, having long decay time, are caused by the spin-forbidden transitions from the 5d14f9 high-spin states to the ground 5I8 states of Ho3+ ions. Weak spin allowed 5d14f9(low-spin)-4f10 emission band at 158 nm was observed only in CaF2–Ho crystals. Spin allowed and spin-forbidden excitation bands were observed near 166 and 155 nm, respectively, in all studied crystals. Fast component of spin-forbidden emissions due to multiphonon relaxation to low-lying 4f10 Ho3+ level also was observed for all crystals.  相似文献   

8.
The photoluminescence and excitation spectra of Pr3+ activated LiLaP4O12 has been investigated in the 10-300 K temperature region. At all temperatures, the luminescence consists of optical transitions emanating from both the Pr3+ 4f15d1 and the 1S0 states. However, at low temperatures the emission spectrum is dominated by the intraconfiguration emission transitions emanating from the Pr3+1S0 state. With increasing temperature, there is an exchange of intensity between the two emitting states; emission transitions from the 1S0 state exhibit strong intensity quenching while the 4f15d1→4f2 emission transitions reveal intensity gain. These results are explained on the basis of thermal population of the 4f15d1 state by the 1S0 state. The energy barrier of 0.05 eV (403 cm−1) for the nonradiative process is determined from the temperature dependence of the 1S0 lifetime.  相似文献   

9.
Time and spectral dependences of the dielectric permittivity of the LiY1 ? x Lu x F4 (x = 0, 0.5, and 1) crystals doped with Ce3+ and co-doped with Yb3+ ions under UV laser excitation were studied by the 8-mm microwave resonant technique at room temperature. The obtained photoconductivity spectrum in 240–310 nm spectral range was interpreted as a stepwise photoionization spectrum of the Ce3+ ions due to sequential 4f–5d and 5d–6s transitions. Average lifetimes of free and defect trapped (color centers) charge carriers were estimated.  相似文献   

10.
A series of Eu2+ and Sm3+ co-doped Li2SrSiO4 phosphors are prepared by the high temperature solid-state reaction. The morphology, structure and spectroscopic properties of the prepared samples are characterized by scanning electron microscopy, X-ray diffraction, diffuse reflection spectra, photoluminescence spectra and electron paramagnetic resonance spectra, respectively. The effect of Sm3+ doping concentration on the photoluminescence intensity of the prepared samples is also investigated. The results indicate that the crystal structure of Li2SrSiO4 is not changed with the Eu2+, Sm3+ co-doping. The spherical-like particle size of the obtained product is about 20–30 nm in diameter. When the Sm3+ concentration is 0.3 mol% and the Eu2+ concentration is 0.7 mol%, the phosphors show the maximum emission intensity, which is 50% higher than that of Eu2+ doped Li2SrSiO4. Excited at 420 nm, the phosphor presents a single broad emission band peaking at 558 nm, which is ascribed to the 4f65d1 → 4f7 transitions of Eu2+ and 4G5/2 → 6H5/2 and 4G5/2 → 6H7/2 transitions of Sm3+. The Commission International de I′Eclairage chromaticity coordinates of Li2SrSiO4:0.7 mol% Eu2+, 0.3 mol% Sm3+ are x = 0.28, y = 0.28.  相似文献   

11.
Energy shifts of 4f6 states of Eu3+ in matrices, and phonon sidebands, linewidths and luminescence decay of Eu3+ in Ln2O2S (Ln=Lu, Y, Gd and La) have been studied. The charge transfer state (CTS) of Eu3+ is described by a model in which a hole is transferred from Eu3+ to ligands. Septet states obtained from the 4f7(8S) + hole configuration of CTS interact with the 7F term of the 4f6 configuration. This effect causes downward shifts of 7FJ states in matrices. Diffuse charge distributions for 7FJ states due to the mixing with CTS make the curvatuve of their adiabatic potential curves be smaller than that for 5DJ'. Such a difference in the potential curves between 7FJ and 5DJ' causes broadening of the absorption lines compared with the corresponding emission linewidths in Y2O2S. A dynamic Jahn-Teller model is proposed for the concentration-enhanced phonon sidebands accompanying 4f-4f transitions. The vibronics appear only in the excitation spectra and not in the emission spectra. Spectral distributions of the effective density of phonon states are obtained from the observed phonon sidebands for Ln2O2S: 5%Eu. The phonon spectra indicate delocalization of the 4f orbitals of Eu3+ with increasing the host-cation radius. The observed lifetimes of 5D0 show a decrease in the same order due to decrease in the 4f-CTS mixing.  相似文献   

12.
We report on observation of upconverted VUV luminescence due to 5d-4f radiative transitions in Er3+ and Nd3+ ions doped into some fluoride crystals, under excitation by ArF and KrF excimer lasers, respectively. Only spin-forbidden 5d-4f luminescence of Er3+ (at 165 nm) was detected from the LiYF4:Er3+ crystal whereas both spin-forbidden (at 169 nm) and spin-allowed (at 160.5 nm) components are observed from the BaY2F8:Er3+ crystal, the latter being much weaker than in the case of one-photon excitation. Nd3+ 5d-4f luminescence at 180 and 173 nm has been detected from the LiYF4:Nd3+ and LaF3:Nd3+ crystals, respectively. The shift of short-wavelength edge of 5d-4f emission spectra towards longer wavelengths is observed under temperature increase from 15 to 293 K. The observed effects in the spectra of Er3+ and Nd3+ doped crystals were interpreted as a result of reabsorption of 5d-4f luminescence escaping from the bulk of the crystals.  相似文献   

13.
Time-resolved excitation and emission spectra of SrF2: Er3+ upon selective excitation with synchrotron radiation in the VUV and ultrasoft x-ray ranges at T = 8 K were studied. The VUV luminescence of SrF2: Er3+ derives from high-energy interconfiguration 4f105d-4f11 transitions in the Er3+ ion. The VUV emission spectrum revealed, in addition to the 164.5-nm band (millisecond-range kinetics), a band at 146.4 nm (with a decay time of less than 600 ps). The formation of excitation spectra for the f-f and f-d transitions in the Er3+ ion is discussed.  相似文献   

14.
The mulliphonon transition rates in Ho3+:LaF3 are estimated from the observed fluorescence decay rates of the states 5F3 and (5F4, 5S2), in the temperature interval 80–675°K. The data is analyzed in terms of the existing theoretical models. The analysis indicates that the high energy phonons play a dominant role in these multiphonon transitions.  相似文献   

15.
The luminescence spectra and decay curves for the 4G5/2 level of Sm3+ ions in 55.95P2O5+14K2O+6KF+14.95BaO+9Al2O3+0.1Sm2O3 glass, referred to as PKFBASm01, have been studied as a function of pressure up to 40.5 GPa at room temperature. With the increase in pressure, a continuous red shift of the 4G5/26H9/2, 7/2, 5/2 transitions and a progressive increase in the magnitude of the crystal-field splittings for these transitions are observed. The decay curves for the 4G5/2 level of the Sm3+ ions in PKFBASm01 glass are found to exhibit single exponential behavior at ambient pressure and become non-exponential at higher pressures, accompanied by shortening of lifetimes. A generalized Yokoto–Tanimoto model has been used to explain the pressure-induced non-exponential nature of the decay curves.  相似文献   

16.
Cross relaxation betweenē(2 E) and4 A 2 states of Cr3+ in ruby at an applied external magnetic field ofH=5336 Oe was measured by monitoring the ¦? 1/2〉ex→ ¦? 3/2〉g optical transition in the temperature region of 1.6 to 4.2 °K. The chromium concentration varied from 2.9· 10?4 to 4 · 10?6 Cr3+/Al3+. With a concentration greater than 2 · 10?5, the light intensity of the observed transition increases when cross relaxation takes place, while below this value it decreases. By measurement of the fluorescent intensity of one transition and simultaneously inducing EPR ground state transitions, we monitored the effect of trapping. Taking the value for trapping from fluorescence decay time measurements, we have used rate equations for calculating the actual change of excited state population when cross relaxation occurs. With this phenomenological model we are able to explain our experimental data. Finally some calculations for the effective spin temperature in theē(2 E) state as a function of Cr3+ concentration as well as for various applied magnetic fields have been done.  相似文献   

17.
The blue-emitting phosphors of Eu2+-doped Na2CaMg(PO4)2 were prepared by high-temperature solid-state reaction. The crystal phase formation was confirmed by X-ray powder diffraction measurement. The luminescence properties were investigated by photoluminescence excitation and emission spectra. The phosphor exhibited the blue luminescence due to the 4f65d1→4f7 transition of Eu2+ ions under the excitation of near UV light. The influence of temperature on the luminescence intensities and decay lifetimes of Eu2+ was investigated. An unusual increase of the decay lifetimes of the 4f65d emission of Eu2+ ion is observed in Na2CaMg(PO4)2 from 10 K to room temperature. The thermal stability of the luminescence of Eu2+-doped Na2CaMg(PO4)2 was discussed.  相似文献   

18.
The spectra of the absorption and magnetic circular dichroism in the praseodymium-yttrium garnet-aluminate Pr3+:YAG have been studied within the visible and near ultraviolet (UV) spectral range for temperature T = 90 K and 300 K. Analysis of the spectral and the temperature dependences of the magnetooptical and optical spectra has made it possible to identify the optical 4f → 4f transitions occurring between the Stark sublevels of the 1 D 2, 3 P 0, and 3 H 4 multiplets in Pr3+:YAG. It has been shown that in the MCD mechanism in Pr3+:YAG within the visible and UV spectral range for the absorption bands due to both forbidden 4f → 4f and allowed 4f → 5d transitions, a significant role is being played by the effect of quantum-mechanical “mixing” of the states of the three lowest-energy Stark singlets of the ground-state 3 H 4 multiplet of the non-Kramers RE Pr3+ ion.  相似文献   

19.
The structure of the absorption spectra of Ce3+, Pr3+, and Tb3+ ions in the vicinity of 4f-5d transitions has been investigated. At low temperatures the absorption spectra exhibit a weakly pronounced fine structure, in contrast to narrow-line spectra in crystals of Ca, Sr, and Ba fluorides. The spectra of Ce3+, Pr3+, and Tb3+ ions in CdF2 can be considered as the absorption spectra of these ions in alkali-earth fluorides, broadened by 60–75 cm?1. The broadening is related to the autoionization of electron from the local 5d(e g ) level to the energy-degenerate states of the conduction band of CdF2 crystal.  相似文献   

20.
We have modeled the 4f 1-5d 1 absorption spectrum of a LiYF4:Ce3+ crystal at zero temperature using a microscopic model of the electron-phonon interaction and the real spectrum of LiYF4 lattice vibrations. Effects caused by mixing of the wave functions of different states of the 5d 1 excited configuration of the Ce3+ ion, which is induced by the electron-phonon interaction, are considered based on the calculations of the second-, third-, and fourth-order exact moments of curvature of the spectrum envelope. We have shown that the large value of the splitting between the maxima of the bands in the absorption spectrum that correspond to transitions to the third and fourth 5d 1 levels is a result of the nonadiabatic interaction of 5d electrons with lattice vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号