首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Eu2+/Mn2+-doped KCaPO4 phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), SEM, photoluminescence excitation, and emission spectra, and the luminescence decay curves were measured. Mn2+ singly doped KCaPO4 shows the weak origin-red luminescence band peaked at about 590 nm. The Eu2+/Mn2+ co-doped phosphors emit two distinctive luminescence bands: a blue one centered at 480 nm originating from Eu2+ ions and a broad red-emitting one peaked at 590 nm from Mn2+ ions. The luminescence intensity from Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ ions. The efficient energy transfer from Eu2+ to Mn2+ was verified by the photoluminescence spectra together with the luminescence decay curves. The resonance-type energy transfer via a dipole–quadrupole interaction mechanism was supported by the decay lifetimes. The emission colors could be tuned by changing the Mn2+-doping concentration.  相似文献   

2.
A series of orange reddish emitting phosphors Eu3+-doped Sr3Bi(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence (PL) properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Bi(PO4)3:Eu3+ phosphors invariably exhibit five peaks assigned to the 5D07FJ (J=0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The luminescence intensity was enhanced with increasing Eu3+ content and the emission reached the maximum intensity at x=0.05 in Sr3Bi(PO4)3:xEu3+. The energy transfer behavior in the phosphors was discussed. The Commission Internationale de lEclairage (CIE) chromaticity coordinates, the quantum efficiencies, and the decay curves of the entitled phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Bi(PO4)3 phosphors are promising orange reddish-emitting phosphors pumped by near-UV light.  相似文献   

3.
A red-emitting phosphor of Eu3+-doped calcium–tellurium–zinc oxide, Ca3Te2(ZnO4)3, with a garnet-type structure was synthesized by high temperature solid-state reactions. This phosphor exhibited a strong red emission. The photoluminescence excitation spectrum showed that Ca3Te2(ZnO4)3:Eu3+ can be effectively excited by UV–visible light. The property of long-wavelength excitation for this material has a benefit as a red phosphor in application of white light-emitting diodes. The colour coordinates were calculated. The excitation and emission spectra and luminescence decay curves were obtained using a pulsed, tunable, narrowband dye laser. Crystallographic sites and charge compensation mechanism of Eu3+ ions were discussed. The emission line from Eu3+ in intrinsic crystallographic site in the lattice was located at 579.56 nm. The emission line from Eu3+ in another disturbed site, which is created by the defects created by the charge-compensation, was located at 580.88 nm. The disordered crystallographic sites of Eu3+ are benefit for their strong red luminescence corresponding to the 5D07F2 transition.  相似文献   

4.
Eu2+:CeBr3 crystals were grown by vertical Bridgman growth method and slight aliovalent doping of Eu2+ in the CeBr3 crystal did not change the crystal structure. The X-ray stimulated luminescence, photoluminescence, decay kinetics and scintillation properties were investigated at room temperature. The X-ray stimulated luminescence spectra exhibited wide broad emission bands from 3.54 eV to 2.95 eV in the Eu2+:CeBr3 crystal with high content of 620 ppm of Eu2+, which were the overlap of the emission bands ascribed to 5d → 4f transition of Ce3+ and 4f65 d1 → 4f7 transition of Eu2+, respectively. When the content of Eu2+ was decreased to 70 ppm, another emission band centered at 2.29 eV was observed. The photoluminescence spectra showed the energy transfer from Ce3+ to Eu2+. This decreased the Ce3+ emission intensity but enhanced the Eu2+ emission intensity. The photoluminescence decay time of Ce3+ emission decreased from 14 ns to 10 ns when the content of Eu2+ increased from 70 ppm to 620 ppm. The decay time of the emission of 525 nm did not change with the excitation wavelength and Eu2+ content, which could be assigned to the excitons that were bound on Eu2+ related centers. The light output of the Eu:CeBr3 crystal under the excitation of 241Am radioactive source was less than 20.2% of Tl:NaI crystal.  相似文献   

5.
The luminescence properties of polyphosphates NaEu x Gd(1?x)(PO3)4 (x = 0–1.00) and the energy transfer from Gd3+ to Eu3+ were studied. In undoped NaGd(PO3)4 sample, the photon cascade emission of Gd3+ was observed under 8S7/26GJ excitation (201 nm) in which the emission of a red photon due to 6GJ6PJ transition is followed by an ultraviolet photon emission due to 6PJ8S7/2 transition. When part of Gd3+ ions in the host NaGd(PO3)4 were substituted by Eu3+ ions, the NaGd(PO3)4:Eu3+ sample showed intensive red emission under 172-nm vacuum-ultraviolet (VUV) excitation which is suitable for mercury-free fluorescent lamps and plasma display panel applications. Based on the VUV–visible spectroscopic characteristics and the luminescence decay properties of NaGd(PO3)4:Eu3+, it was found that the quantum cutting by a two-step energy transfer from Gd3+ to Eu3+ can improve the red emission of Eu3+ ions under VUV excitation but only a part of the excitation energy in the excited 6PJ states within Gd3+ ions can be transferred to Eu3+ ions for its red emission, and the nonradiative energy transfer efficiencies from the excited 6PJ states within Gd3+ to Eu3+ were calculated.  相似文献   

6.
Eu3+-doped ZrO2 phosphors with different charge compensators (Li+, Na+, K+) were prepared by the sol-gel method. The properties of the as-obtained samples are characterized by X-ray diffraction, scanning electron microscope, photoluminescence spectra, and decay curve. The results show that ZrO2:Eu3+ phosphors with different charge compensation are mixed phase of tetragonal and monoclinic phase, and the volume fraction of tetragonal phase of ZrO2:Eu3+/Na+ phosphor is bigger than the other phosphors. The phosphors can emit strong red light at 606~616 nm (5D07F2) excited by ultraviolet light (395 nm). Compared with two charge compensation patterns in the ZrO2:Eu3+, it has been found that ZrO2:Eu3+ phosphors used Na+ as charge compensator show greatly enhanced red emission under 395 nm excitation and longer luminescence lifetime.  相似文献   

7.
The excitation and emission spectra of octahedrally coordinated europium ion (Eu2+) ions in Cs2M2+P2O7 (M2+=Ca, Sr) are reported and discussed. The remarkable features of the Eu2+ luminescence in these phosphate materials include (a) very large Stokes shift of emission (∼1 eV), (b) high luminescence quenching temperature, and (c) unusually low energy of the emitted photons for Eu2+ luminescence in phosphate-based materials. The broad emission bands of Eu2+ in Cs2CaP2O7 and Cs2SrP2O7 peak at 607 and 563 nm, respectively. The Stokes shift, crystal field splitting, centroid shift and the red shift of the Eu2+ 4f65d1 electronic configuration have been estimated from the relevant optical data. The radiative lifetime of the Eu2+ emission in Cs2M2+P2O7 is ∼1.2 μs. The nature of the Eu2+ emission in Cs2M2+P2O7 is discussed and arguments are presented to associate the luminescence with an extreme case of normal 4f65d1→4f7[8S7/2] emission.  相似文献   

8.
The luminescent properties of Eu3+ and Eu2+ ions in sodium pyrophosphate, Na4P2O7, have been studied. The excitation spectrum of the Eu3+ emission in Na4P2O7 consists of several sets of bands in the range 280–535 nm due to 4f–4f transitions of Eu3+ ions and a broad band with a maximum at about 240 nm interpreted to be due to a charge transfer (CT) transition from oxygen 2p states to empty states of the Eu3+ 4f6-configuration. Although the CT band energy is large enough, the quantum efficiency (η) of the Eu3+ emission in Na4P2O7 under CT excitation was estimated to be very low (η ≤ 0.01). In terms of a configurational coordinate model, this fact is interpreted as a result of the high efficiency of a radiationless relaxation from the CT state to the 7F0 ground state of Eu3+ ions occupying sodium sites in Na4P2O7. A strong reducing agent is required in order to stabilize Eu2+ ions in Na4P2O7 during the synthesis. Several nonequivalent Eu2+ luminescence centers in Na4P2O7 were found.  相似文献   

9.
Two series of calcium gallate phosphors: Ca1?xEuxGa4O7 and Ca1?2xEuxNaxGa4O7 (x=0, 0.002, 0.01, 0.02, 0.03, 0.05) were synthesized by a modified Pechini method and their optical properties at 298 and 77 K were investigated. In undoped CaGa4O7 upon 255 nm excitation a bluish white emission (λmax=500 nm) followed by an afterglow of the same color lasting for 10–20 s was observed. Eu3+-doping quenched the host-related luminescence and the characteristic red emission of the dopant with maximum at 613 nm appeared. Its excitation spectrum consisted of a broad band assigned to ligand to metal, O2?→Eu3+, charge transfer absorption and narrow lines arising from intraconfigurational transitions within the 4f6 states of Eu3+ ion. The effects of Eu3+ concentration and Na+ co-doping on the luminescence properties and decay kinetics were studied. Low temperature emission spectra showed that Eu3+ ions are positioned in environments of different symmetries. Their relative populations changed with the activator content. Co-doping with Na+ ions led to a remarkable reduction of the number of Eu3+ sites as well as to noticeable improvement of the luminescence brightness though it did not affect the decay time of the emission. The quantum efficiencies of singly doped CaGa4O7:Eu3+ were very low (in the range of 1–3.7%). Na+ co-doping improved this parameter leading to the highest efficiency of 11% for CaGa4O7:3%Eu3+,3%Na+.  相似文献   

10.
We investigate the persistent luminescence in europium-doped SrMg2(PO4)2 upon codoping with auxiliary terbium. Luminescence properties of the phosphors, including photoluminescence, luminescence decay and thermoluminescence, are systematically studied. SrMg2(PO4)2:Eu2+ shows only a weak persistent luminescence, and codoping with Tb3+ is necessary to obtain considerable persistent luminescence. An energy level scheme is constructed to convey reasonable trapping and detrapping processes in the material.  相似文献   

11.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

12.
(Gd1?xEux)(BO2)3 (0≤x≤1) phosphors are synthesized by traditional high temperature solid state reaction. The photoluminescence (PL) properties of Gd(BO2)3 and Gd(BO2)3 activated with Eu3+ are investigated. The PL spectra exhibit the typical characteristic emission and excitation of Gd3+ and Eu3+ ions, and support the energy transfer taking place from Gd3+ to Eu3+ ions. The relationship between Eu3+ doping concentration and emission intensity is also studied. Even if all of the Gd3+ ions are substituted by Eu3+ ions, the concentration quenching between Eu3+ happens. However, the quenching is not complete. The luminescence decay curves are measured, and the lifetimes become short with the Eu3+ content increasing. The decreasing Gd3+ lifetimes also indicates that there exists efficient energy transfer between Gd3+ and Eu3+ ions.  相似文献   

13.
Eu2+ single-doped and Eu2+/Mn2+-codoped Na2BaMgP2O8 phosphors were prepared by a combustion-assisted synthesis method. The phase formation was confirmed by X-ray powder diffraction measurement. Na2BaMgP2O8:Eu2+,Mn2+ shows a broad blue emission band and a red emission band, which originate from Eu2+ occupying the Ba2+ sites and Mn2+ occupying the Mg2+ sites, respectively. The efficient energy transfer from Eu2+ to Mn2+ is verified by the excitation and emission spectra together with the luminescence decay curves. Based on the principle of energy transfer, the relative intensities of blue and red emissions could be tuned by adjusting the contents of Eu2+ and Mn2+.  相似文献   

14.
Green-emitting phosphor Na2Ba2Si2O7:Eu2+ has been synthesized by a conventional high-temperature solid-state reaction. The phase structure and luminescence properties are characterized by the X-ray powder diffraction, diffuse reflectance spectra, photoluminescence excitation and emission spectra, temperature-dependent emission spectra, respectively. It can be efficiently excited in the wavelength range of 325–400 nm and consists of a strong broad green band centered at about 501 nm, which is ascribed to 4f66s05d1 → 4f76s25d0 transition of Eu2+. The critical quenching concentration of Eu2+ in the Na2Ba2Si2O7 host is about 0.8 mol % and corresponding quenching behavior is ascribed to be electric dipole–dipole interaction. Furthermore, the phosphor has good thermal stability property, and the activation energy for thermal quenching is calculated as 0.34 eV.  相似文献   

15.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

16.
Eu2+-activated Sr2LiSiO4F phosphors were synthesized at 900°C by solid-state reaction in reducing atmosphere, and their photoluminescence (PL) properties were systematically investigated by diffuse reflection spectra, PL excitation and emission spectra, and by the fluorescence decay curve. Sr2LiSiO4F:Eu2+ emits intense green light at 520 nm originating from the 5d14f6−4f7 transition of Eu2+ under 365 nm n-UV excitation. The PL excitation spectrum matches the emission from n-UV chips. These materials could be promising green phosphors for use in generating white light in phosphor-converted white light-emitting-diodes (LEDs).  相似文献   

17.
The Yb3+-doped LaPO4 was prepared by hydrothermal reaction under fine acidity control and identified by X-ray diffraction and FT-IR spectroscopy. The obtained powders crystallize in the monoclinic phase of LaPO4. The spectroscopic study at room temperature (RT) of the Yb3+-doped LaPO4 powder was investigated. Thus a wide band, characteristic of the fundamental 2F5/22F7/2 transition in near infrared (NIR) range, has been located for La(1−x)YbxPO4 (x = 5, 10%). Four Stark levels of the ground 2F7/2 state are located on the emission spectra between 976 nm and 1030 nm, after excitation at 925 nm. Low re-absorption of the 0-phonon transition was registered. Charge transfer band (CTB) luminescence of Yb3+, which is not observed in LaPO4 in later works, was appeared under 266 nm excitation. In the UV–Visible spectra, double band typical for the CTB luminescence of Yb3+ are observed. The decay time dependence as a function of the concentration is also reported and compared to other works. The room temperature radiative lifetimes of the IR emission and charge transfer band luminescence are compatible with potential applications of this phosphor respectively as solid-state lasers and scintillators.  相似文献   

18.
A new blue-emitting phosphor LiCaPO4: Eu2+ was synthesized by solid state reaction at a relatively low temperature of 900 °C. It gives a single intense emission band centering at 470 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The dependence of luminescence intensities on Eu2+ concentration was investigated. The phosphor, with a single excitation band extending from 250 to 400 nm, could be efficiently excited by near-ultraviolet light-emitting diodes and is believed to be a promising blue-emitting phosphor for white light-emitting diodes.  相似文献   

19.
Eu2+ and Mn2+ co-doped SrMg2(PO4)2 phosphors with blue and red two emission bands were prepared by the high temperature solid state method and their luminescent properties have been investigated as a function of activator and co-activator concentrations. Resonance-type energy transfers from Eu2+ to Mn2+ were discovered by directly overlapping the Eu2+ emission spectrum and the excitation spectrum of Mn2+. Efficiencies of energy transfer were also calculated according to the changes of relative intensities of Eu2+ and Mn2+ emission. According to the principle of energy transfer, we demonstrated that the phosphor SrMg2(PO4)2:Eu2+,Mn2+ with double emission bands exhibited a great potential as a phosphor for ultraviolet light-emitting diodes and the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+. PACS 78.55.-m  相似文献   

20.
The Ca10(PO4)6(OH)2 hydroxyapatite (HA) nanopowders doped with Eu3+ ions were prepared using a wet synthesis method. Their structure and morphology were investigated. The XRD analysis has proven a single-phase of HA nanocrystallites. The average sizes of HA nanocrystallites calcinated at 400°C and 700°C were determined to be about 20 nm and 30 nm, respectively. The emission and excitation spectra as well as the fluorescence decay rates of Eu3+ ion doped HA nanocrystallites were measured. Particular attention was given to the spectroscopic properties of Eu3+ ions as a luminescent probe of nanocrystalline HA structure as a result of varying annealing temperature and dopant concentration. The Judd-Ofelt analysis of f-f transitions of Eu3+:HA nanocrystallites was performed. The effect of calcination temperatures on grain sizes and luminescence properties is noted and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号