首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The surface thermodynamic characteristics of both doped polyaniline (PANI-HEBSA) and the non-conducting form (PANI-EB) were investigated using inverse gas chromatography. Fourteen solutes were injected into two separate chromatographic columns containing PANI-EB and PANI-HEBSA. All solutes interacted strongly with the conducting form PANI-HEBSA; in particular, undecane and dodecane showed stronger interaction due to the increase of the dispersive forces. Methanol and ethanol showed stronger H-bonding with the conducting form than propanol and butanol. A curvature was observed for acetates and alcohols with a maximum of around 145 degrees C as an indication of a phase change from a semicrystalline to amorphous phase. DeltaH(l)s value increased considerably (-3.35 to -46.44 kJ/mol) while the deltaH(l)s for the undoped PANI (PANI-EB) averaged about -0.03 kJ/mol. PANI-EB-alkane interaction parameters were measured and ranged from +0.40 to +1.50 (endothermic). However, PANI-HEBSA showed an exothermic behavior due to the polar surface (-1.50 to +1.2). Interaction parameters decreased as the temperature increased and are characteristic of the strong interaction. The dispersive surface energy of the non conducting PANI-EB ranged from 29.13 mJ/m2 at 140 degrees C to 94.05 mJ/m2 at 170 degrees C, while the surface energy of the conducting PANI-HEBSA showed higher values (150.24 mJ/m2 at 80 degrees C to 74.27 mJ/m2 at 130 degrees C). Gamma(s)d values for PANI-EB were found to be higher than expected. The trend of the gamma(s)d change direction is also surprising and unexpected due to the thermal activation of the surface of the polymer and perhaps created some nano-pores resulting in an increase in surface energy of the non-conducting form.  相似文献   

2.
The miscibility of blends of semicrystalline poly(vinylidene fluoride)(PVF2) and poly(vinyl methyl ketone) (PVMK) along with surface characterization were investigated using the inverse gas chromatography method (IGC), over a range of blend compositions and temperatures. Three chemically different families, alkanes, acetates, and alcohols, were utilized for this study. The values of the PVF2‐PVMK interaction parameters were found to be slightly positive for most of the solutes used, although some degree of miscibility was found at all compositions. Miscibility was greatest at a 50:50 w/w composition of the blend. The interaction parameters obtained from IGC are in excellent agreement with those obtained using calorimetry on the same blends. The calculated molar heat of sorption of alkanes, acetates, and alcohols into the blend layer reveal the impact of the combination of dispersive and hydrogen bonding forces on the interaction of solutes with the blend's backbone. The dispersive component of the surface energy was found to range from 18.70–64.30 mJ/m2 in the temperature range of 82–163 °C. A comparison of the blend's surface energy with that of mercury and other polymers is given. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1155–1166, 2000  相似文献   

3.
Lightweight conductive polymers are considered for lightning strike mitigation in composites by synthesizing intrinsically conductive polymers (ICPs) and by the inclusion of conductive fillers in insulating matrices. Conductive films based on polyaniline (PANI) and graphene have been developed to improve through‐thickness conductivity of polymer composites. The result shows that the conductivity of PANI enhanced by blending polyvinylpyrrolidone (PVP) and PANI in 3:1 ratio. Conductive composite thin films are prepared by dispersing graphene in PANI. The conductivity of composite films was found to increase by 40× at 20 wt% of graphene inclusion compared with PVP and PANI blend. Fourier‐transform‐infrared (FTIR) spectra confirmed in situ polymerization of the polymer blend. The inclusion of graphene also exhibits an increase in Tg by 21°C. Graphene additions also showed an increase in thermal stability by approximately 148°C in the composite films. The mechanical result obtained from DMA shows that inclusion of graphene increases the tensile strength by 48% at 20 wt% of graphene reinforcement. A thin, highly conductive surface that is compatible with a composite resin system can enhance the surface conductivity of composites, improving its lightning strike mitigation capabilities.  相似文献   

4.
Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 °C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 °C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity.  相似文献   

5.
Miscibility and hydrogen-bonding interactions, as well as the morphological properties, of biodegradable polymer blends of poly(3-hydroxybutyrate) (PHB) and a 80% hydrolyzed poly(vinyl alcohol) (PVA80) were studied using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). It was found that PHB is miscible with PVA80 in the amorphous phase over the whole composition range. PVA80 or PHB assumes the amorphous state when its content in the blend is lower than 30 or 20 wt %, respectively. Due to the heavy overlapping of C=O stretching bands from both PVA80 and PHB and the nonmeasurable peak shift in the OH stretching band region, hydrogen-bonding interactions between the OH group of PVA80 and the C=O group of PHB were not detectable at room temperature, but were observed at a higher temperature of 180 degrees C. This is because hydrogen-bonding interactions are promoted above the melting points of these two crystalline polymers, by increasing the mixing entropy and reducing the Deltachi effect. Blending PHB with PVA80 does not have a significant effect on the OH groups of PVA80 that are hydrogen bonded with each other. Instead, the C=O groups of PHB dispossess some of the OH groups that are hydrogen bonded to the C=O groups of PVA80, which gives rise to the miscibility between PVA80 and PHB in the amorphous phase.  相似文献   

6.
Zn|ZnI2| iodine galvanic cells using carbon plate electrodes coated with polymer + carbon powder mixtures are rechargeable with minor self-discharge when a positive ion exchanging film is used as the separator. Among the polymers tested (nylon-6, Poly(tetrahydrofuran), poly(acrylonitrile), poly(methly methacrylate), poly(vinly Alcohol), poly(N-vinylpyrrolidone), and poly(4-vinylpridine)), nylon-6 and poly(tetrahydrofuran) have the highest ability to absorb iodine and afford secondary galvanic cells showing the best rechargeability: the secondary galvanic cells are rechargeable more than 500 times with about 100% current efficiency and 81–83% energy efficiency when charged and discharged at 2 mA/cm2 at 25°C. The average charging and discharging voltages of the secondary cell using nylon-6 are 1.42 and 1.18 V, respectively. The cell prepared by using nylon-6 generates about 80 mA/cm2 of an initial short-circuit current and 0.3–80 mA/cm2 of a steady-state short-circuit current when the cell is dipped into a aqueous solution containing I?3. The steady-state short-circuit current increases with increasing I?3 concentration and a linear correlation holds between the logarithm of the steady-state short-circuit current and the logarithm of [I?3] in the range of [I?3] = 0.05–0.5 mol/1.  相似文献   

7.
Viscosity measurements were used for measuring the rheological behavior of the nylon-6 and polyvinyl alcohol (PVA) blends in solution and hence their compatibility. The change of different viscosities of various blend compositions showed straight line, curve linear, and S-shape. The effect of concentration of one polymer over the other is also explained. This behavior is explained on the basis of the miscibility of the polymers in various blend compositions. The article is published in the original.  相似文献   

8.
The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 degrees C. At 180 degrees C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of >/=2 s. The growth rate was about 1.4 A/cycle at substrate temperatures between 140 and 200 degrees C. Growth rates of 1.60 and 2.10 A/cycle were observed at 220 and 240 degrees C, respectively. In a series of films deposited at 180 degrees C, the film thicknesses varied linearly with the number of deposition cycles. Time-of-flight elastic recoil analyses demonstrated stoichiometric W2O3 films, with carbon, hydrogen, and nitrogen levels between 6.3 and 8.6, 11.9 and 14.2, and 4.6 and 5.0 at. %, respectively, at substrate temperatures of 160, 180, and 200 degrees C. The as-deposited films were amorphous. Atomic force microscopy showed root-mean-square surface roughnesses of 0.7 and 0.9 nm for films deposited at 180 and 200 degrees C, respectively. The resistivity of a film grown at 180 degrees C was 8500 microhm cm.  相似文献   

9.
Electrospinning is a simple and effective technology for fabricating nanofibers and polymer blending provides strength and minimal defects of electrospun ones. Therefore, in the present study, fabrication, and characterization of nylon-6/gelatin electrospun nanofibers using low-toxic solvents was investigated as means to improve the morphological deficiencies of gelatin nanofibers and facilitate its electrospinnability. The morphology of electrospun nylon-6/gelatin nanofibers were characterized using scanning electron microscope (SEM). SEM results showed that electrospun blend nanofibers had smooth surface with average diameter of from 40 to 100 nm; while, the miscibility of the blend and thermal behavior of nanofibers were determined using Fourier transform-infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC). Water contact-angle measurement (WCA) was employed to investigating the wettability of nanofibers.  相似文献   

10.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

11.
A blend of poly(epsilon-caprolactone) (PCL) and poly(vinyl chloride) (PVC) with 90 wt % PCL was prepared. Two films of this blend, which were grown at 35 and 45 degrees C, showed the absence and presence of banded spherulites, respectively. A detailed examination conducted with time-of-flight secondary ion mass spectrometry (ToF-SIMS) found that the surface composition of the film grown at 45 degrees C was related to its structure, which was shown to contain ridges and valleys. Phase images obtained using atomic force microscopy (AFM) indicated that the ridges and valleys consisted of edge-on and flat-on lamellae, respectively. ToF-SIMS imaging revealed that PVC and PCL were located mainly on the surface of the valleys and ridges, respectively. This morphology-driven surface segregation was caused by the difference in the surface energy between the flat-on and edge-on lamellae.  相似文献   

12.
A novel conductive blend of polyaniline (PANI) with polyamidoamine dendrimer (PAMAM (G 2.0)) was prepared by different blending procedure. The PANI‐PAMAM blended polymers were characterized by UV–vis, FTIR, and electron paramagnetic resonance (EPR) spectra. The effect of varying the blending procedure on structure and EPR properties of PANI‐PAMAM blended polymers was investigated. Varying the blending procedure and temperature has a direct effect on the structure and EPR parameters (ΔHPP, g factor, NS, T2, and A/B ratio). EPR spectroscopic studies suggested the presence of chemical interaction between PANI and PAMAM. Electron localization effects in PANI‐PAMAM blended polymers can therefore be studied using the technique of EPR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1–8, 2006  相似文献   

13.
In this study, photovoltaic (PV) properties of dye‐sensitized solar cells (DSSCs) incorporated with graphene oxide nanosheet‐polyaniline (GOS‐PANI) nanohybrid/poly(ethylene oxide) (PEO) blend gel electrolytes were investigated. Chemical structure and composition of GOS‐PANI nanohybrids were characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. The images of transmission electron microscopy revealed that PANI nanorods were anchored to the single‐layered GOS for the GOS‐PANI nanohybrids. Ionic conductivities of the GOS‐PANI/PEO–based gel electrolytes were measured using a conductivity meter. The electrochemical catalytic activities of the GOS‐PANI nanohybrids were determined through cyclic voltammetry. These GOS‐PANI nanohybrids were served as the extended electron transfer materials and catalyst for the electrochemical reduction of I3?. Due to the enhancement of the ionic conductivity and electrochemical catalytic activity of the gel electrolyte, better PV performance was observed for the DSSCs based on the GOS‐PANI containing electrolytes as compared to the pristine PEO electrolyte‐based DSSC sample. Moreover, PV performances of the GOS‐PANI/PEO–based DSSCs were closely related to the PANI content of GOS‐PANI nanohybrids. The highest photo‐energy conversion efficiency (5.63%) was obtained for an optimized GOS‐PANI/PEO (5:95, w/w) blend gel electrolyte‐based DSSC sample. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 321–332  相似文献   

14.
Gibbs energy, enthalpy, and entropy of mixing in binary blends of chitosan with ter‐copolyamide 6/66/610 at ambient conditions have been determined over the entire concentration range using thermodynamic cycle based on dissolution of individual polymers and their blends of different composition in a common solvent – formic acid. Experimental procedure included stepwise equilibrium vapor sorption of glacial formic acid on the cast films and isothermal microcalorimetry of dissolution of these films in liquid glacial formic acid at 25 °C. Formic acid appeared to be a very good solvent for individual polymers and their blends. Flory‐Huggins interaction parameter determined from sorption isotherms was negative and varied from ?2.56 to ?1.79 depending upon blend composition. The enthalpies of dissolution of individual polymers and their blends were strongly exothermic and varied from ?200 to ?40 Joule/g. Independent thermodynamic cycles for Gibbs free energy and enthalpy remarkably revealed similar trends in concentration dependence of different thermodynamic functions of mixing between chitosan and copolyamide. At high chitosan content, the binary blend is characterized by large and negative values of Gibbs free energy, enthalpy, and entropy of mixing that provide high polymer compatibility. On the contrary, at high copolyamide content the blends are incompatible and are characterized by positive values of enthalpy, entropy, and Gibbs free energy of mixing. Such complicated thermodynamic behavior is the result of the superposition of strong molecular interactions (H‐bonds) between polymers in the blend and isothermal fusion of copolyamide crystallites. Thermodynamic analysis correlates well with the data obtained by polarized microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2603–2613, 2007  相似文献   

15.
To test the potential of heterogeneous catalysts for the nylon-6 synthesis from 6-aminocapronitrile, a number of zeolites, aluminum silicate, and metal oxides were tested as catalysts for the model reaction of pentanenitrile with water and hexylamine to N-hexylpentanamide. All zeolitic and aluminum silicate systems showed an insufficient performance, while the metal oxides (TiO(2), ZrO(2), Nb(2)O(5)) showed very promising results. The kinetic behavior of the metal oxides was further investigated. First the nitrile was catalytically hydrolyzed to the terminal amide and subsequently the amidation of the hexylamine occurred. To polymerize 6-aminocapronitrile into nylon-6, more than 99 % nitrile conversion was required to obtain a high-molecular-weight polymer. Pentanenitrile conversions larger than 99 % can be obtained within six hours, at 230 degrees C, by using ZrO(2) as the catalyst. A kinetic study (by using IR spectroscopy) on the behavior of the metal oxides demonstrated that the adsorbed nitrile was catalytically hydrolyzed at the surface, but remained tightly bound to the surface. Zirconia-catalyzed polymerizations of 6-amino-capronitrile demonstrated that high-molecular-weight nylon-6 is feasible by using this route.  相似文献   

16.
In this work contact angles formed by drops of polystyrene (PS) on a surface of liquid crystalline polymer (LCP) Vectra A910 were measured as a function of temperature for temperatures ranging from 180 to 230°C. The values were used together with the surface tensions of both polymers to evaluate the interfacial tension between PS and the LCP. In order to validate the method used to evaluate this interfacial tension, the interfacial tension between polypropylene (PP) and PS was evaluated using values of contact angles formed by a drop of PP on PS and the values of surface tension of both polymers in the molten state. The values of interfacial tension between PP and PS corroborated well the values obtained using the pendant drop method. The values of interfacial tension between PS and the LCP were shown to decrease linearly with temperature.  相似文献   

17.
In the present study, the long-term high-temperature (>80 degrees C) and temperature programming stability of fused silica capillaries packed with 5 microm PLRP-S 300 A and monolithic PS-DVB capillaries (both 180 microm id x 6 cm) under reversed-phase conditions has been examined. In isothermal mode, the columns were defined as temperature-stable when a less than 10% change in apparent retention factors (k) and a less than 20% change in "retention time/peak width"-factors (n) of the probe solutes (proteins) were observed after passing 7,500 void volumes of effluent through the columns (about 100 h operation). According to these criteria, the PLRP-S and monolithic capillaries were defined temperature-stable at 100 and 130 degrees C, respectively. Furthermore, when continuously running temperature programs between 50 degrees C and the upper temperature limit determined in isothermal mode, virtually no change in k or n were observed on neither of the columns after running more than 35,000 void volumes or 1,600 temperature programs. Additionally, temperature-programmed reversed-phase separations of proteins on both types of capillaries are demonstrated and discussed.  相似文献   

18.
This paper reports a monomer strategy for imprinting of 1,3-dinitrobenzene (DNB) molecules at the surface of conductive functional polyaniline nanofibers (PANI) for the first time. It has been demonstrated that the vinyl functional monomer layer on the PANI surface can not only direct the selective occurrence of imprinting polymerization, but can also drive DNB templates into the polymer through charge-transfer complexing interactions between DNB and functionalized PANI. These two basic processes lead to the formation of DNB-imprinted polymers at the surface of polyaniline nanofibers. The capacity to uptake DNB shows that selectivity coefficient in the nanofibers polymers is nearly three times as high as that of traditional imprinted materials and the nanofibers polymers also possess high selectivity toward DNB in comparison to similar nitroaromatic compounds. A linear response of DNB concentration between 2.20×10(-8) and 3.08×10(-6) M was exhibited with a detection limit of 7.33×10(-9) M (S/N=3). These results reported here could form the basis of a new strategy for preparing various polymer-coating layers on polyaniline supports and the molecular imprinting techniques discussed could also find applications in the fields of separation, trace detection, and environmental monitoring.  相似文献   

19.
Vesicular electrokinetic chromatography was used to investigate solute partitioning from the aqueous phase into dihexadecyl hydrogen phosphate (DHP) vesicles. Retention factors of neutral solutes are related to their partition coefficients between the aqueous phase and vesicles (K(vw)). The K(vw) of the aromatic test solutes were readily obtained from the slopes of the linear relationships between retention factors versus DHP concentrations. The technique offers the advantages of speed, automation, and small sample size for determination of partition coefficients. The K(vw) values of 43 uncharged solutes were measured at below as well as above the phase transition temperatures. The logarithms of partition coefficients (log K(vw)) of solutes at 71 degrees C (above T(c)) were slightly higher than those at 36 degrees C (below T(c)). The solvation characteristics of DHP were also studied using linear solvation energy relationships at the two temperatures.  相似文献   

20.
Hyperbranching poly(allylamine) (PAAm) and poly(ethylene glycol) (PEG) on silicon and its effect on protein adhesion was investigated. Hyperbranching involves sequential grafting of polymers on a surface with one of the components having multiple reactive sites. In this research, PAAm provided multiple amines for grafting PEG diacrylate. Current methodologies for generating PEG surfaces include PEG-silane monolayers or polymerized PEG networks. Hyperbranching combines the nanoscale thickness of monolayers with the surface coverage afforded by polymerization. A multistep approach was used to generate the silicon-supported hyperbranched polymers. The silicon wafer surface was initially modified with a vinyl silane followed by oxidation of the terminal vinyl group to present an acid function. Carbodiimide activation of the surface carboxyl group allowed for coupling to PAAm amines to form the first polymer layer. The polymers were hyperbranched by grafting alternating PEG and PAAm layers to the surface using Michael addition chemistry. The alternating polymers were grafted up to six total layers. The substrates remained hydrophilic after each modification. Static contact angles for PAAm (32-44 degrees) and PEG (33-37 degrees) were characteristic of the corresponding individual polymer (30-50 degrees for allylamine, 34-42 degrees for PEG). Roughness values varied from approximately 1 to 8 nm, but had no apparent affect on protein adhesion. Modifications terminating with a PEG layer reduced bovine serum albumin adhesion to the surface by approximately 80% as determined by ELISA and radiolabel binding studies. The hyperbranched PAAm and PEG surfaces described in this paper are nanometer-scale, multilayer films capable of reducing protein adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号