首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract

Chemosensor 1 has been synthesized via a one-pot synthetic route incorporating anthracene and azomethine (HC═N—) units acting as signaling and binding units, respectively. Chemosensor 1 offered selective colorimetric and fluorometric response towards Al3+ and Hg2+ ions among other cations in CH3OH. Solution of 1 in methanol exhibited a naked eye color transition from yellow to colorless on addition of Al3+ and Hg2+ ions. In case of emission experiments, non-fluorescent solution of 1 showed major enhancement in intensity giving blue fluorescence for both metal ions. The limits of detection were calculated to be 1.04 and 0.8 µM for Al3+ and Hg2+, respectively, using fluorescence titrations. Further, reduced form of Schiff base 1 (2) has also been synthesized in order to compare the importance of azomethine (HC═N—) and (H2C—NH—) moieties in selective coordination. However, the reduced analogue 2 did not exhibit selective detection towards any of the ions.  相似文献   

2.
通过“click”反应合成了两个新的由三氮唑连接的含芘的杯[4]芳烃。 化合物1含有两个芘单元,对Zn2+表现出比率荧光响应,且对Cu2+, Hg2+ 和 Pb2+表现出选择性的荧光淬灭;而化合物2只含一个芘单元,对铜离子有显著的荧光淬灭,对汞离子有中等程度的荧光淬灭。利用化合物1对锌离子和铜离子不同的荧光响应,设计了INH和NOR逻辑门。  相似文献   

3.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

4.
Azo 8-hydroxyquinoline benzoate (2) was synthesized and studied to detect metal ions. Distinct color change was found for compound 2 in the presence of transition metal ions Hg2+ or Cu2+ in CH3CN, respectively, which makes it possible for distinguishing Hg2+ and Cu2+ from other metal ions by the ‘naked eye’.  相似文献   

5.

A new anthracene fluorophore senses Hg2+ selectively in aqueous solution. Among the metal ions examined, fluorescent chemosensor 1 shows selective large CHEQ effects with Hg2+ and Ag+ at pH 7.  相似文献   

6.
A new nitrobenzoxadiazole (NBD)-based chemosensor N′-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thiophene-2-carbohydrazide ( NTCH) was synthesized for detecting Hg2+. NTCH could sense Hg2+ through a color change method from pale yellow to pink. Binding ratio of NTCH and Hg2+ was determined to be 1:1 with the analysis of electrospray ionization mass spectrometry and Job plot. Detection limit turned out to be 0.69 μM. In addition, NTCH could be successfully utilized for detecting Hg2+ in real water samples and visible color test strips. The probing mechanism of NTCH to Hg2+ was explained with 1H nuclear magnetic resonance (NMR) titration, Job plot, electrospray ionization mass spectrometry (ESI-MS), and theoretical calculations.  相似文献   

7.
Two new highly selective colorimetric chemosensors for Hg2+, based on azobenzene and highly selective Hg2+‐promoted deprotection of a dithioacetal have been designed and synthesized. In the presence of as little as 20 μM Hg2+, the sensors change their color from light yellow to deep red, which can easily be observed by the naked eye. The underlying signaling mechanism is intramolecular charge transfer (ICT). The sensors have good selectivity for Hg2+ with respect to several common alkali, alkaline earth, and transition metal ions. Furthermore, they can be used for in‐the‐field measurements by virtue of a dipstick approach without any additional equipment.  相似文献   

8.
Fluorogenic benzothiazole-based receptor has been easily immobilised onto filter paper and silica nanoparticle by sol-gel reaction. The sensing ability of the benzothiazole-immobilised thin layer filter paper chromatography (TLC-1) was evaluated on the basis of fluorescent changes caused by metal ions that were dropped onto the TLC plate. The TLC-1 exhibited a high affinity and selectivity for Hg2+ over other competing metal ions. Therefore, the TLC-1 holds promise as a portable sensor for the detection of Hg2+ in aqueous solution. Furthermore, the adsorption capacity of a column packed with SiO2-1 was evaluated by the application of metal ions under various experimental conditions, such as pH, flow rate and concentration. The SiO2-1 column removed 98% of Hg2+ from drinking water containing 10 ppb of Hg2+. The adsorption capacity of the SiO2-1 column was not strongly affected by pH and flow rates.  相似文献   

9.
Zhang JF  Lim CS  Cho BR  Kim JS 《Talanta》2010,83(2):658-662
The first example of cyclometalated platinum(II)-containing rhodamine probe (1) with two-photon induced luminescent properties was synthesized and investigated for mercury detection. A highly selective color change of 1, from light yellow to pink, is observed only in the presence of Hg2+ due to the formation of 1,3,4-oxadiazole ring in 2. This selectivity of Hg2+ with color changes can be observed easily by the naked-eye. Meanwhile, a remarkable turn-on and selective 20-fold fluorescent enhancement of 1 upon binding with Hg2+ over the other tested metal ions was observed. The water-soluble probe 1 was successfully applied in the visualizing of the site of Hg2+ accumulation as well as estimating of trace amounts of mercury ions in live HeLa cells by two-photon microscopy.  相似文献   

10.
合成了以1,8-萘酰亚胺为发色团,以联吡啶为离子受体的Zn2+荧光探针,并进行了表征及离子识别性能的研究。研究表明该化合物对Zn2+具有良好的识别性能,同时相对于Ca2+, Cd2+, Co2+, Cu2+, Hg2+, Fe3+, Mn2+, Ni2+, Pb2+等金属离子具有良好的选择性。  相似文献   

11.
A simple epoxy-based polymer 1 bearing 1-naphthylamine units has been synthesized and its recognition behaviors toward various metal ions have been investigated in THF-water (8:2, v/v) solution. The designed polymer 1 was found to exhibit selective ON-OFF-type fluorosensing behavior toward Fe3+ ions over other representative metal ions such as Cu2+, Zn2+, Co2+, Ni2+, and Hg2+ ions.  相似文献   

12.
We provide a highly sensitive and selective assay to detect Hg2+ in aqueous solutions using a novel β-functionalised porphyrin-based chemosensor 5 at room temperature. The binding properties of the chemosensor 5 for cations were examined by UV–vis spectroscopy and 1H NMR. The results indicate that a 1:1 stoichiometric complex is formed between chemosensor 5 and mercury (II) ion. The recognition mechanism between chemosensor 5 and metal ion was discussed based on their absorbance changes and the chemical shift changes when they interact with each other. Control experiments revealed that chemosensor 5 has a selective response to mercury (II) ion compared with other metal ions.  相似文献   

13.
A novel coumarin derivative CTT was synthesized via the condensation of 7-(N,N-diethylamino) coumarin-3-aldehyde with 5-amino-1,3,4-thiadiazole-2-thiol and its structure was characterized using infrared spectroscopy (IR), 1H NMR, mass spectrometry (MS) techniques, and elemental analysis. The recognition properties of CTT with metal ions were investigated in CH3CN–H2O (v/v = 1/1) solution using UV–vis absorption and fluorescence emission spectrum method. The results showed that CTT could monitor Cu2+ and Hg2+ simultaneously as a dual-function chemosensor in CH3CN–H2O (v/v = 1/1). CTT could be used to detect Cu2+ colorimetrically; when using CTT, a color change from yellowish-brown to yellowish-green could be readily observed by the naked eye. CTT showed turn-on fluorescent recognition of Hg2+, the fluorescence enhancement was attributed to the inhibited C=N isomerization and the obstructed excited state intramolecular proton transfer (ESIPT) of CTT. The recognition mechanism of CTT for Cu2+ and Hg2+ was studied by experiments and theoretical calculations, respectively. Therefore, CTT has the ability to be a “single chemosensor for dual targets.”  相似文献   

14.
A bilateral Schiff base is reported for the colorimetric and fluorometric dual‐channel sensing of Hg2+ ions by taking advantage of the hydrolysis of carbon‐nitrogen double bond, altering an ICT state mechanism and then Hg2+ ions coordinating with amino moieties of 1,5‐DAN and leading to the aggregation of 1,5‐DAN. Meanwhile, it formed a stable neutral complex of amino‐Hg‐amino. In addition, test strips based on L were fabricated, which also exhibited a good selectivity to Hg2+ as in solution. This work provides a novel approach for the selective recognition of mercury ions. Notably, the color changes are very significant and all the recognition processes can be observed by the naked eyes. We believe the test strips can act as a convenient and efficient Hg2+ test kit.  相似文献   

15.
A structurally simple (Z)-2-(naphthalen-2-ylmethylene)-N-phenylhydrazinecarbothioamide (R1) was used as a colorimetric and fluorescent sensor for both F and Cu2+/Hg2+ ions. R1 selectively recognised F ions as indicated by colour change from colourless to green. Fluorescence spectral data reveal that R1 is an excellent fluorescence chemosensor for Cu2+ ions. Finally, R1 was successfully applied to the bioimaging of Cu2+ ions in RAW 264.7 macrophage cells.  相似文献   

16.
A new series of azobenzene dyes, which possessed colorimetric and ratiometric recognition to Hg2+ based on the mechanism of internal charge transfer (ICT), was developed and characterized. The molecules involving azo and imino functional groups can coordinate with Hg2+ to result in a large blue shift from 453 to 363 nm corresponding to a notable color change from orange to pale yellow in aqueous methanol solution (H2O/CH3OH=1/4, V/V), which can be applied to naked eye detection of Hg2+. The sensitivity, selectivity and binding mode of the sensors to Hg2+ were investigated by UV‐Vis spectroscopy.  相似文献   

17.
Li Y  Wu P  Xu H  Zhang Z  Zhong X 《Talanta》2011,84(2):508-512
For the widely used gold nanoparticles (AuNPs)-based colorimetric probes, AuNPs generally change from dispersion to aggregation state accompanying with corresponding color turning from red to blue. Although colorimetric probes based on the anti-aggregation of AuNPs show exceptional selectivity and sensitivity, few examples have been reported in literature. A facile but highly sensitive and selective colorimetric probe based on the anti-aggregation of AuNPs transferred from the deactivation of aggregation agent 4,4′-dipyridyl by Hg2+ was developed in this work. This reported probe is suitable for real-time detection of Hg2+ in water with a detection limit of 3.0 ppb for Hg2+, and exhibits a selectivity toward Hg2+ by two orders of magnitude over other metal ions. The dynamic range of this probe can be conveniently tuned by adjusting the amount of 4,4′-dipyridyl used.  相似文献   

18.
Herein, a simple electrochemical sensor was fabricated for sensing Hg2+ ions by using electrochemically reduced p‐nitrobenzoic acid molecules modified (ERpNBA) glassy carbon electrode (GCE). The modified electrode was applied for the determination of Hg2+ ions by using differential pulse anodic stripping voltammetry (DPASV). Experimental parameters such as concentration of p‐nitrobenzoic acid used for electrode modification, pH, accumulation time and deposition potential used for the determination of Hg2+ ions were optimized. The strong interaction between the Hg2+ ions and the lone pair of electrons on the nitrogen atoms of ERpNBA molecules leads to highly selective adsorption of Hg2+ ions on the modified electrode. Under the optimum experimental conditions, the sensor showed higher sensitivity and very low detection limit for Hg2+ ions than other metal ions such as Cd2+, Pb2+ and Zn2+ ions. The LOD for Hg2+ ions was 240 pM which is below the guideline value given by the World Health Organization and the earlier reports.  相似文献   

19.
A novel fluorescent ratiometric chemosensor based on 4-pyren-1-yl-pyrimidine (PPM) has been designed and prepared for the detection of Hg2+ in the presence of other competing metal ions in acetonitrile. The photo exhibits fluorescence color change of PPM from blue to green without and with Hg2+, which red shift of wavelength about 105 nm in fluorescence emission spectra. It can serve as a highly selective chemodosimeter for Hg2+ with ratiometric and naked-eye detection. The photophysical properties of PPM confirmed a 2:1 (PPM–Hg2+) binding model and the spectral response toward Hg2+ was proved to be reversible.  相似文献   

20.
A low‐molecular‐weight fluorescent probe 1 (M.W. = 238.24) based on aurone was synthesized, and its application in fluorescent detection of Hg2+ in aqueous solution and living cells was reported. It exhibited an “on–off” fluorescent response toward Hg2+ in aqueous solution. Both the color and fluorescence changes of the probe were remarkably specific for Hg2+ in the presence of other common metal ions, satisfying the selective requirements for biomedical and environmental monitoring application. The probe has been applied in direct measurement of Hg2+ content in river water samples and imaging of Hg2+ in living cells, which further indicates the potential application values in environmental and biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号