首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
Reflecting on problems posed by Gyárfás [Ramsey Theory Yesterday, Today and Tomorrow, Birkhäuser, Basel, 2010, pp. 77–96] and Mubayi [Electron J Combin 9 (2002), #R42], we show in this note that every r‐edge‐coloring of Kn contains a monochromatic component of diameter at most five on at least n/(r?1) vertices. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 337–340, 2012  相似文献   

2.
The set of problems we consider here are generalizations of square-free sequences [A. Thue, Über unendliche Zeichenreichen, Norske Vid Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22]. A finite sequence a1a2an of symbols from a set S is called square-free if it does not contain a sequence of the form ww=x1x2xmx1x2xm,xiS, as a subsequence of consecutive terms. Extending the above concept to graphs, a coloring of the edge set E in a graph G(V,E) is called square-free if the sequence of colors on any path in G is square-free. This was introduced by Alon et al. [N. Alon, J. Grytczuk, M. Ha?uszczak, O. Riordan, Nonrepetitive colorings of graphs, Random Struct. Algor. 21 (2002) 336-346] who proved bounds on the minimum number of colors needed for a square-free edge-coloring of G on the class of graphs with bounded maximum degree and trees. We discuss several variations of this problem and give a few new bounds.  相似文献   

3.
《Journal of Graph Theory》2018,88(3):521-546
Correspondence coloring, or DP‐coloring, is a generalization of list coloring introduced recently by Dvořák and Postle [11]. In this article, we establish a version of Dirac's theorem on the minimum number of edges in critical graphs [9] in the framework of DP‐colorings. A corollary of our main result answers a question posed by Kostochka and Stiebitz [15] on classifying list‐critical graphs that satisfy Dirac's bound with equality.  相似文献   

4.
A proper coloring of a graph is a labeled partition of its vertices into parts which are independent sets. In this paper, given a positive integer j and a family ? of connected graphs, we consider proper colorings in which we require that the union of any j color classes induces a subgraph which has no copy of any member of ?. This generalizes some well‐known types of proper colorings like acyclic colorings (where j = 2 and ?is the collection of all even cycles) and star colorings (where j = 2 and ?consists of just a path on 4 vertices), etc. For this type of coloring, we obtain an upper bound of O(d(k ? 1)/(k ? j)) on the minimum number of colors sufficient to obtain such a coloring. Here, d refers to the maximum degree of the graph and k is the size of the smallest member of ?. For the case of j = 2, we also obtain lower bounds on the minimum number of colors needed in the worst case. As a corollary, we obtain bounds on the minimum number of colors sufficient to obtain proper colorings in which the union of any j color classes is a graph of bounded treewidth. In particular, using O(d8/7) colors, one can obtain a proper coloring of the vertices of a graph so that the union of any two color classes has treewidth at most 2. We also show that this bound is tight within a multiplicative factor of O((logd)1/7). We also consider generalizations where we require simultaneously for several pairs (ji, ?i) (i = 1, …, l) that the union of any ji color classes has no copy of any member of ?i and obtain upper bounds on the corresponding chromatic numbers. © 2011 Wiley Periodicals, Inc. J Graph Theory 66: 213–234, 2011  相似文献   

5.
A natural digraph analog of the graph theoretic concept of “an independent set” is that of “an acyclic set of vertices,” namely a set not spanning a directed cycle. By this token, an analog of the notion of coloring of a graph is that of decomposition of a digraph into acyclic sets. We extend some known results on independent sets and colorings in graphs to acyclic sets and acyclic colorings of digraphs. In particular, we prove bounds on the topological connectivity of the complex of acyclic sets, and using them we prove sufficient conditions for the existence of acyclic systems of representatives of a system of sets of vertices. These bounds generalize a result of Tardos and Szabó. We prove a fractional version of a strong‐acyclic‐coloring conjecture for digraphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 177–189, 2008  相似文献   

6.
《Journal of Graph Theory》2018,87(4):399-429
We consider an extremal problem motivated by a article of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge‐colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given , we look for n‐vertex graphs that admit the maximum number of r‐edge‐colorings such that at most colors appear in edges incident with each vertex, that is, r‐edge‐colorings avoiding rainbow‐colored stars with t edges. For large n, we show that, with the exception of the case , the complete graph is always the unique extremal graph. We also consider generalizations of this problem.  相似文献   

7.
The size‐Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2‐edge‐coloring of H yields a monochromatic copy of G. Size‐Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size‐Ramsey numbers for k‐uniform hypergraphs. Analogous to the graph case, we consider the size‐Ramsey number of cliques, paths, trees, and bounded degree hypergraphs. Our results suggest that size‐Ramsey numbers for hypergraphs are extremely difficult to determine, and many open problems remain.  相似文献   

8.
We introduce the relation of almost‐reduction in an arbitrary topological Ramsey space ? as a generalization of the relation of almost‐inclusion on ?[∞]. This leads us to a type of ultrafilter ?? ? ? which corresponds to the well‐known notion of selective ultrafilter on ?. The relationship turns out to be rather exact in the sense that it permits us to lift several well‐known facts about selective ultrafilters on ? and the Ellentuck space ?[∞] to the ultrafilter ?? and the Ramsey space ?. For example, we prove that the open coloring axiom holds on L (?)[??], extending therefore the result from [3] which gives the same conclusion for the Ramsey space ?[∞]. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Explicit construction of Ramsey graphs or graphs with no large clique or independent set, has remained a challenging open problem for a long time. While Erdös’ probabilistic argument shows the existence of graphs on 2n vertices with no clique or independent set of size 2 n , the best explicit constructions achieve a far weaker bound. There is a connection between Ramsey graph constructions and polynomial representations of Boolean functions due to Grolmusz; a low degree representation for the OR function can be used to explicitly construct Ramsey graphs [17,18]. We generalize the above relation by proposing a new framework. We propose a new definition of OR representations: a pair of polynomials represent the OR function if the union of their zero sets contains all points in {0, 1} n except the origin. We give a simple construction of a Ramsey graph using such polynomials. Furthermore, we show that all the known algebraic constructions, ones to due to Frankl-Wilson [12], Grolmusz [18] and Alon [2] are captured by this framework; they can all be derived from various OR representations of degree O(√n) based on symmetric polynomials. Thus the barrier to better Ramsey constructions through such algebraic methods appears to be the construction of lower degree representations. Using new algebraic techniques, we show that better bounds cannot be obtained using symmetric polynomials.  相似文献   

10.
We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-hard in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus on approximability in general bipartite graphs and improve earlier approximation results by giving approximation ratios matching inapproximability bounds. We next deal with min weighted edge coloring in bipartite graphs. We show that this problem remains strongly NP-hard, even in the case where the input graph is both cubic and planar. Furthermore, we provide an inapproximability bound of 7/6−ε, for any ε>0 and we give an approximation algorithm with the same ratio. Finally, we show that min weighted node coloring in split graphs can be solved by a polynomial time approximation scheme.  相似文献   

11.
《Journal of Graph Theory》2018,87(2):135-148
Let ( be two positive integers. We generalize the well‐studied notions of ‐colorings and of the circular chromatic number to signed graphs. This implies a new notion of colorings of signed graphs, and the corresponding chromatic number χ. Some basic facts on circular colorings of signed graphs and on the circular chromatic number are proved, and differences to the results on unsigned graphs are analyzed. In particular, we show that the difference between the circular chromatic number and the chromatic number of a signed graph is at most 1. Indeed, there are signed graphs where the difference is 1. On the other hand, for a signed graph on n vertices, if the difference is smaller than 1, then there exists , such that the difference is at most . We also show that the notion of ‐colorings is equivalent to r‐colorings (see [12] (X. Zhu, Recent developments in circular coloring of graphs, in Topics in Discrete Mathematics Algorithms and Combinatorics Volume 26 , Springer Berlin Heidelberg, 2006, pp. 497–550)).  相似文献   

12.
We study vertex‐colorings of plane graphs that do not contain a rainbow face, i.e., a face with vertices of mutually distinct colors. If G is a 3 ‐connected plane graph with n vertices, then the number of colors in such a coloring does not exceed . If G is 4 ‐connected, then the number of colors is at most , and for n≡3(mod8), it is at most . Finally, if G is 5 ‐connected, then the number of colors is at most . The bounds for 3 ‐connected and 4 ‐connected plane graphs are the best possible as we exhibit constructions of graphs with colorings matching the bounds. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 129–145, 2010  相似文献   

13.
For two graphs, G and H, an edge coloring of a complete graph is (G,H)-good if there is no monochromatic subgraph isomorphic to G and no rainbow subgraph isomorphic to H in this coloring. The set of numbers of colors used by (G,H)-good colorings of Kn is called a mixed Ramsey spectrum. This note addresses a fundamental question of whether the spectrum is an interval. It is shown that the answer is “yes” if G is not a star and H does not contain a pendant edge.  相似文献   

14.
The lightness of a digraph is the minimum arc value, where the value of an arc is the maximum of the in-degrees of its terminal vertices. We determine upper bounds for the lightness of simple digraphs with minimum in-degree at least 1 (resp., graphs with minimum degree at least 2) and a given girth k, and without 4-cycles, which can be embedded in a surface S. (Graphs are considered as digraphs each arc having a parallel arc of opposite direction.) In case k≥5, these bounds are tight for surfaces of nonnegative Euler characteristics. This generalizes results of He et al. [W. He, X. Hou, K.-W. Lih, J. Shao, W. Wang, X. Zhu, Edge-partitions of planar graphs and their game coloring numbers, J. Graph Theory 41 (2002) 307-317] concerning the lightness of planar graphs. From these bounds we obtain directly new bounds for the game colouring number, and thus for the game chromatic number of (di)graphs with girth k and without 4-cycles embeddable in S. The game chromatic resp. game colouring number were introduced by Bodlaender [H.L. Bodlaender, On the complexity of some coloring games, Int. J. Found. Comput. Sci. 2 (1991) 133-147] resp. Zhu [X. Zhu, The game coloring number of planar graphs, J. Combin. Theory B 75 (1999) 245-258] for graphs. We generalize these notions to arbitrary digraphs. We prove that the game colouring number of a directed simple forest is at most 3.  相似文献   

15.
For a given graph F we consider the family of (finite) graphs G with the Ramsey property for F, that is the set of such graphs G with the property that every two‐coloring of the edges of G yields a monochromatic copy of F. For F being a triangle Friedgut, Rödl, Ruciński, and Tetali (2004) established the sharp threshold for the Ramsey property in random graphs. We present a simpler proof of this result which extends to a more general class of graphs F including all cycles. The proof is based on Friedgut's criteria (1999) for sharp thresholds and on the recently developed container method for independent sets in hypergraphs by Saxton and Thomason and by Balogh, Morris and Samotij. The proof builds on some recent work of Friedgut et al. who established a similar result for van der Waerden's theorem.  相似文献   

16.
In this article we study multipartite Ramsey numbers for odd cycles. Our main result is the proof that a conjecture of Gyárfás et al. (J Graph Theory 61 (2009), 12–21), holds for graphs with a large enough number of vertices. Precisely, there exists n0 such that if n?n0 is a positive odd integer then any two‐coloring of the edges of the complete five‐partite graph K(n ? 1)/2, (n ? 1)/2, (n ? 1)/2, (n ? 1)/2, 1 contains a monochromatic cycle of length n. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

17.
Given a graph H , a graph G is called a Ramsey graph of H if there is a monochromatic copy of H in every coloring of the edges of G with two colors. Two graphs G , H are called Ramsey equivalent if they have the same set of Ramsey graphs. Fox et al. (J Combin Theory Ser B 109 (2014), 120–133) asked whether there are two nonisomorphic connected graphs that are Ramsey equivalent. They proved that a clique is not Ramsey equivalent to any other connected graph. Results of Ne?et?il et al. showed that any two graphs with different clique number (Combinatorica 1(2) (1981), 199–202) or different odd girth (Comment Math Univ Carolin 20(3) (1979), 565–582) are not Ramsey equivalent. These are the only structural graph parameters we know that “distinguish” two graphs in the above sense. This article provides further supportive evidence for a negative answer to the question of Fox et al. by claiming that for wide classes of graphs, the chromatic number is a distinguishing parameter. In addition, it is shown here that all stars and paths and all connected graphs on at most five vertices are not Ramsey equivalent to any other connected graph. Moreover, two connected graphs are not Ramsey equivalent if they belong to a special class of trees or to classes of graphs with clique‐reduction properties.  相似文献   

18.
Ramsey数R(K_3,K_(16)-e)的一个下界   总被引:2,自引:0,他引:2  
图论方法是研究Ramsey理论中最常用的方法,80多年的研究产生了大量的成果.Ramsey数R(G,H)是这样的最小正整数n,使得完全图K_n的边的任何一种红、蓝染色都会有一个红色边子图G,或者有一个蓝色边子图H.本文找到Ramsey数R(K_3,K_(16-e))的一个下界.  相似文献   

19.
We study a simple Markov chain, known as the Glauber dynamics, for generating a random k ‐coloring of an n ‐vertex graph with maximum degree Δ. We prove that, for every ε > 0, the dynamics converges to a random coloring within O(nlog n) steps assuming kk0(ε) and either: (i) k/Δ > α* + ε where α*≈? 1.763 and the girth g ≥ 5, or (ii) k/Δ >β * + ε where β*≈? 1.489 and the girth g ≥ 7. Our work improves upon, and builds on, previous results which have similar restrictions on k/Δ and the minimum girth but also required Δ = Ω (log n). The best known result for general graphs is O(nlog n) mixing time when k/Δ > 2 and O(n2) mixing time when k/Δ > 11/6. Related results of Goldberg et al apply when k/Δ > α* for all Δ ≥ 3 on triangle‐free “neighborhood‐amenable” graphs.© 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

20.
The toughness of a (noncomplete) graph G is the minimum value of t for which there is a vertex cut A whose removal yields components. Determining toughness is an NP‐hard problem for general input graphs. The toughness conjecture of Chvátal, which states that there exists a constant t such that every graph on at least three vertices with toughness at least t is hamiltonian, is still open for general graphs. We extend some known toughness results for split graphs to the more general class of 2K2‐free graphs, that is, graphs that do not contain two vertex‐disjoint edges as an induced subgraph. We prove that the problem of determining toughness is polynomially solvable and that Chvátal's toughness conjecture is true for 2K2‐free graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号