首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The1H and 13C NMR resonances for acridine derivatives 9‐substituted with chloro, allylamino and propargylamino groups were completely assigned using a concerted application of gs‐COSY, gs‐HMQC and gs‐HMBC experiments. 9‐(N‐Allyl)‐ and 9‐(N‐propargyl)acridinamine derivatives present amino–imino tautomerism including a large broadening of 1H and 13C NMR signals at room temperature. To obtain suitable resolution, therefore, these latter compounds were studied at 370 K in DMSO‐d6 solutions and showed a complete shift towards the imino tautomers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The first preparation of acridin‐9(10H)‐ones carrying a tertiary thiocarbamoyl group at C(10), i.e., N,N‐dialkyl‐9‐oxoacridine‐10(9H)‐carbothioamides 9 , is described. The method is based on the reaction of (2‐halophenyl)(2‐isothiocyanatophenyl)methanones 7 , prepared from (2‐aminophenyl)(2‐halophenyl)methanones 5 by a convenient three‐step sequence, with secondary amines in DMF at room temperature to generate the corresponding thiourea derivatives 8 in situ, which are treated with NaH at 100–120° to provide the desired products in one‐pot reactions in generally good yields.  相似文献   

3.
A novel Cu(OAc)2·H2O catalyzed coupling reaction of N‐substituted‐2‐iodobenzamides with malononitrile to afford N‐substituted‐3‐amino‐4‐cyano‐isoquinoline‐1(2H)‐ones is described. The reaction proceeded in DMSO at 90°C for 5 h in nitrogen without external ligands.  相似文献   

4.
The 1H and 13C NMR resonances of 22 5‐(5‐substituted‐2‐nitrophenyl)‐1H‐pyrrole‐2‐carboxamides, 22 5‐(5‐substituted‐2‐aminophenyl)‐1H‐pyrrole‐2‐carboxamides, and 9 5‐phenyl‐1H‐pyrrole‐2‐carboxamides were assigned completely using the concerted application of one‐ and two‐dimensional experiments (DEPT, gs‐HMQC and gs‐HMBC). NOE studies and conformational analysis confirm the preferred conformations of such compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The reaction of 1‐fluoro‐2‐lithiobenzenes, generated from 1‐bromo‐2‐fluorobenzenes 1 and BuLi, with 2‐halobenzaldehydes and subsequent oxidation of the resulting alcohols 2 afforded (2‐fluorophenyl)(2‐halophenyl)methanones 3 , which, on treatment with benzenamines or arylmethanamines, followed by NaH, gave rise efficiently to 10‐aryl‐ or 10‐(arylmethyl)acridin‐9(10H)‐ones ( 5 or 7 ), respectively.  相似文献   

6.
The 13 C NMR resonances of 19 1‐acyl‐3‐(2‐nitro‐5‐substitutedphenyl)‐4,5‐dihydro‐1H‐pyrazoles, and 19 1‐acyl‐3‐(2‐amino‐5‐substituted)‐4,5‐dihydro‐1H‐pyrazoles, were completely assigned using the concerted application of one‐ and two‐dimensional NMR experiments (DEPT, gs‐HSQC and gs‐HMBC). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Both 10‐(2‐hydroxyethyl)acridin‐9(10H)‐one, C15H13NO2, and 10‐(2‐chloroethyl)acridin‐9(10H)‐one, C15H12ClNO, have monoclinic (P21/c) symmetry and supramolecular three‐dimensional networks. But the differences in the intermolecular interactions displayed by the hydroxy group and the chlorine substituent lead to stronger intermolecular π‐stacking interactions and hydrogen bonding, and hence a significantly higher melting point for the former.  相似文献   

8.
A convenient procedure for the preparation of a new type of thiophthalides, 3‐alkoxybenzo[c]thiophen‐1(3H)‐ones 4 and 9 has been developed. Thus, 1‐(dialkoxymethyl)‐2‐lithiobenzenes, generated by Br/Li exchange between 2‐bromo‐1‐(dialkoxymethyl)benzenes 1 and 6 , and BuLi, react with isothiocyanates to afford N‐substituted 2‐(dialkoxymethyl)benzothioamides 2 and 7 , which, on treatment with a catalytic amount of TsOH?H2O, give N‐substituted 3‐alkoxybenzo[c]thiophen‐1(3H)‐imines 3 and 8 . The latter are hydrolyzed under acidic conditions to the desired products 4 and 9 , respectively.  相似文献   

9.
15N NMR spectral data for 3‐substituted (chloro, bromo, acetyl, carboxy, carboethoxy, methylsulfanyl, methylsulfinyl, N,N‐dimethylsulfamoyl, nitro) 4(1H)‐quinolinones and their 1‐methyl derivatives are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
(E)‐2‐[2‐(1‐Substituted ethylidene)hydrazinyl]‐5‐oxo‐9b‐hydroxy‐5,9b‐dihydroindeno[1,2‐d][1,3]‐thiazine‐4‐carbonitriles and (E)‐5‐oxo‐[(E)‐(1‐substituted ethylidene)hydrazinyl]‐2,5‐dihydroindeno[1,2‐d][1,3]thiazine‐4‐carbonitriles have been obtained from the reaction of 2‐(substituted ethylidene)hydrazinecarbothioamides with 2‐(1,3‐dioxo‐2,3‐dihydro‐1H‐inden‐2‐ylidene)propanedinitrile ( 1 ) in ethyl acetate solution. However, (Z)‐6′‐amino‐1,3‐dioxo‐3′‐substituted‐2′‐[(E)‐(1‐phenylethylidene)hydrazono]‐1,2′,3,3′‐tetrahydrospiro(indene‐2,4′‐[1,3]thiazine)‐5′‐carbonitriles were observed during the reaction of N‐substituted‐2‐(1‐phenylethylidene)hydrazinecarbothioamides with ( 1 ). The structure assignment of products has been confirmed on the basis of 1H‐, 13C‐NMR, and mass spectrometry, as well as theoretical calculations.  相似文献   

11.
Substituted 2‐(benzylamino)‐2H‐1,4‐benzoxazin‐3(4H)‐ones are unstable under alkaline and acidic conditions, undergoing opening of the benzoxazinone ring. 2‐Bromo‐2H‐1,4‐benzoxazin‐3(4H)‐ones show similar degradation under alkaline conditions, while replacement of Br at C(2) to give 2‐hydroxy‐2H‐1,4‐benzoxazin‐3(4H)‐ones was observed only under mild alkaline conditions. Mechanisms of ring opening and degradation to 2‐aminophenol derivatives are proposed.  相似文献   

12.
N‐Aryl‐substituted 2‐nitrosoanilines (=2‐nitrosobenzenamines) 1 , readily available by nucleophilic substitution of the ortho‐H‐atom in nitroarenes with arenamines, react with 2‐substituted acetic acid esters in the presence of a weak base giving 1‐arylquinoxalin‐2(1H)‐ones (Scheme 2). This cyclocondensation allows for the synthesis of compounds 2 – 4 , unsubstituted at C(3) or substituted by alkyl, aryl, ester, amide, and keto groups, in good to excellent yields (Tables 14).  相似文献   

13.
Various [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐thiones were synthesized in high yields by treatment of the corresponding [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐ones with Lawesson's reagent. Detailed NMR spectroscopic studies were undertaken of the title compounds. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H) was achieved by the combined application of various one‐ and two‐dimensional (1D and 2D) NMR spectroscopic techniques. Unequivocal mapping of most 13C,1H spin coupling constants is accomplished by 2D (δ, J) long‐range INEPT spectra with selective excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In the course of saponification experiments with bis(2‐cyanoethyl) 2,6‐dimethyl‐4‐(2‐nitrophenyl)‐1,4‐dihydro‐3,5‐pyridinedicarboxylate ( 1 ), an analogue of the calcium channel blocker nifedipine, three unexpected degradation products were isolated. The compounds were identified as 3‐(2‐acetamido‐1‐carboxy‐1‐propenyl)‐1‐hydroxy‐2‐indolecarboxylic acid ( 3 ), 9‐hydroxy‐1,3‐dimethyl‐β‐carboline‐4‐carboxylic acid ( 4 ) and 6‐hydroxy‐2,4‐dimethyl‐5‐oxo‐5,6‐dihydrobenzo[c][2,7]naphthyridine‐1‐carboxylic acid ( 6 ). The structures of these compounds were deduced from one‐ and two‐dimensional 1H, 13C and natural abundance 15N NMR experiments (1H,1H‐COSY, gs‐HSQC, gs‐HMBC, 15N gs‐HMBC), and corroborated by comparison of their NMR data with the respective data for structurally similar compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
NMR spectra of the synthesized azo dyes, 5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (5a–g), 1,3‐dimethyl‐5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (6a–g), and 5‐arylazo‐2‐thioxo‐pyrimidine (1H,3H,5H)‐4,6‐diones (7a–g) were studied in (CD3)2SO (three drops of CD3OD were added into solutions of the dyes in two different concentrations). All dyes showed intramolecular hydrogen bonding. Dyes 5a–7a showed bifurcated intramolecular hydrogen bonds. Tautomeric behaviours of some of N‐methylated azo dyes (6a‐g) were studied in two different concentrations. The solvent–substrate proton exchange of dyes 5a–d, 6a and 7a–e was examined in presence of three drops of CD3OD. The dyes which were soluble in (CD3)2SO containing CD3OD showed isotopic splitting (β‐isotope effect) in the 13C NMR spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

17.
A series of new chiral 2(5H)‐furanone derivatives containing bis‐1,2,3‐triazole moiety were designed and synthesized from (5S)‐5‐alkoxy‐3,4‐dihalo‐2(5H)‐furanones 1 , dicarboxyl amino acids 2 , propargyl bromide, and organic azides 5 under mild conditions via the sequential three steps, including asymmetric Michael addition‐elimination, substitution and no‐ligand click reaction. Twelve new intermediates, including N‐[5‐alkoxy‐2(5H)‐furanonyl] dicarboxyl amino acids 3 and their corresponding propargyl esters 4 , and twelve target molecules 6 were characterized by FTIR, 1H NMR, 13C NMR, MS and elemental analysis. The influences of different synthetic conditions and substrates in each step were investigated. The research provides a new method and idea for the synthesis of 2(5H)‐furanone compounds with polyheterocyclic structure due to the diversities of four basic unit molecules.  相似文献   

18.
A novel visible‐light‐driven decarboxylative coupling of alkyl N‐hydroxyphthalimide esters (NHP esters) with quinoxalin‐2(1H)‐ones has been developed. This C(sp2)?C(sp3) bond‐forming transformation exhibits excellent substrate generality with respect to both the coupling partners. Of note, a series of 3‐primary alkyl‐substituted quinoxalin‐2(1H)‐ones that were difficult to synthesize by previous methods could be obtained in moderate to excellent yields. Additionally, the mild conditions, easy availability of substrates, wide functional group tolerance and operational simplicity make this protocol practical in the synthesis of 3‐alkylated quinoxalin‐2(1H)‐ones.  相似文献   

19.
3‐Aminoquinoline‐2,4‐diones were stereoselectively reduced with NaBH4 to give cis‐3‐amino‐3,4‐dihydro‐4‐hydroxyquinolin‐2(1H)‐ones. Using triphosgene (=bis(trichloromethyl) carbonate), these compounds were converted to 3,3a‐dihydrooxazolo[4,5‐c]quinoline‐2,4(5H,9bH)‐diones. The deamination of the reduction products using HNO2 afforded mixtures of several compounds, from which 3‐alkyl/aryl‐2,3‐dihydro‐1H‐indol‐2‐ones and their 3‐hydroxy and 3‐nitro derivatives were isolated as the products of the molecular rearrangement.  相似文献   

20.
In the context of our aim of discovering new antitumor drugs among synthetic γ‐lactone‐ and γ‐lactam‐fused 1‐methylquinolin‐4(1H)‐ones, we developed a rapid access to 5‐methyl‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinoline‐8,9(5H,6H)‐dione ( 9 ) exploiting the γ‐lactone‐fused chloroquinoline 10 previously synthesized in our laboratory (Scheme 1). We also elaborated efficient synthetic methods allowing for a rapid access to two nonclassical bioisosteres of 9 , i.e., a deoxy and a carba analogue. The deoxy analogue 11 was prepared in two steps from the γ‐lactone‐fused quinoline 13 which was also the synthetic precursor of 10 (Scheme 1). The carba analogue 6,9‐dihydro‐5‐methyl‐9‐methylene‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinolin‐8(5H)‐one ( 12 ) was easily prepared by HCl elimination from the 9‐(chloromethyl)dioxolofuroquinoline 15 , which was obtained via a three‐component one‐pot reaction from N‐methyl‐3,4‐(methylenedioxy)aniline (=N‐methyl‐1,3‐benzodioxol‐5‐amine; 16 ), commercially available chloroacetaldehyde, and tetronic acid ( 17 ) (Scheme 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号