首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We report the highly facet‐dependent catalytic activity of Cu2O nanocubes, octahedra, and rhombic dodecahedra for the multicomponent direct synthesis of 1,2,3‐triazoles from the reaction of alkynes, organic halides, and NaN3. The catalytic activities of clean surfactant‐removed Cu2O nanocrystals with the same total surface area were compared. Rhombic dodecahedral Cu2O nanocrystals bounded by {110} facets were much more catalytically active than Cu2O octahedra exposing {111} facets, whereas Cu2O nanocubes displayed the slowest catalytic activity. The superior catalytic activity of Cu2O rhombic dodecahedra is attributed to the fully exposed surface Cu atoms on the {110} facet. A large series of 1,4‐disubstituted 1,2,3‐triazoles have been synthesized in excellent yields with high regioselectivity under green conditions by using these rhombic dodecahedral Cu2O catalysts, including the synthesis of rufinamide, an antiepileptic drug, demonstrating the potential of these nanocrystals as promising heterogeneous catalysts for other important coupling reactions.  相似文献   

2.
This work confirms the presence of a large facet‐dependent photocatalytic activity of Cu2O crystals through sparse deposition of gold particles on Cu2O cubes, octahedra, and rhombic dodecahedra. Au‐decorated Cu2O rhombic dodecahedra and octahedra showed greatly enhanced photodegradation rates of methyl orange resulting from a better separation of the photogenerated electrons and holes, with the rhombic dodecahedra giving the best efficiency. Au–Cu2O core–shell rhombic dodecahedra also displayed a better photocatalytic activity than pristine rhombic dodecahedra. However, Au‐deposited Cu2O cubes, pristine cubes, and Au‐deposited small nanocubes bound by entirely {100} facets are all photocatalytically inactive. X‐ray photoelectron spectra (XPS) showed identical copper peak positions for these Au‐decorated crystals. Remarkably, electron paramagnetic resonance (EPR) measurements indicated a higher production of hydroxyl radicals for the photoirradiated Cu2O rhombic dodecahedra than for the octahedra, but no radicals were produced from photoirradiated Cu2O cubes. The Cu2O {100} face may present a high energy barrier through its large band edge bending and/or electrostatic repulsion, preventing charge carriers from reaching to this surface. The conventional photocatalysis model fails in this case. The facet‐dependent photocatalytic differences should be observable in other semiconductor systems whenever a photoinduced charge‐transfer process occurs across an interface.  相似文献   

3.
《化学:亚洲杂志》2017,12(3):293-297
Ag2O cubes, truncated octahedra, rhombic dodecahedra, and rhombicuboctahedra were synthesized in aqueous solution. Two tungsten probes were brought into contact with a single particle for electrical conductivity measurements. Strongly facet‐dependent electrical conductivity behaviors have been observed. The {111} faces are most conductive. The {100} faces are moderately conductive. The {110} faces are nearly non‐conductive. When electrodes contacted two different facets of a rhombicuboctahedron, asymmetrical I–V curves were obtained. The {111} and {110} combination gives the best I–V curve expected for a p‐n junction with current flowing in one direction through the crystal but not in the opposite direction. Density of states (DOS) plots for varying number of different lattice planes of Ag2O match with the experimental results, suggesting that the {111} faces are most electrically conductive. The thicknesses of the thin surface layer responsible for the facet‐dependent properties of Ag2O crystals have been determined.  相似文献   

4.
Cu2O cubes, octahedra, and rhombic dodecahedra have been used to examine facet-dependent catalytic activity in aryl alkyne hydroboration reactions. Although the reaction can proceed by using ethanol or other alcohols as solvent, the use of 1,4-dioxane gave the best product yield. All particle shapes gave exclusively the E-product, but the rhombic dodecahedra exposing {110} surfaces were consistently far more reactive than the other particle morphologies. A product yield of 99 % was achieved by using Cu2O rhombic dodecahedra to catalyze the hydroboration of phenylacetylene at 60 °C for 5 h. The rhombic dodecahedra have been shown to catalyze a variety of substituted aryl alkynes, which demonstrates their potential as a versatile catalyst.  相似文献   

5.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   

6.
Gold nanocubes, octahedra, and rhombic dodecahedra were examined for facet‐dependent catalytic activity in the formation of triazoles. Rhombic dodecahedra gave 100 % regioselective 1,4‐triazoles. The product yield was increased by decreasing the particle size. However, a mixture of 1,4‐ and 1,5‐triazoles was obtained in lower yields when cubes and octahedra of similar sizes were used. The lowest Au‐atom density on the {110} surface and largest unsaturated coordination number of surface Au atoms may explain their best catalytic efficiency and product regioselectivity. Various spectroscopic techniques were employed to verify the formation of the Au–acetylide intermediate and establish the reaction mechanism, in which phenylacetylene binds to the Au {110} surface through the terminal‐binding mode to result in the exclusive formation of 1,4‐triazoles. The smallest rhombic dodecahedra can give diverse 1,4‐disubstituted triazoles in good yields by coupling a wide variety of alkynes and organic halides.  相似文献   

7.
Cu2O cubes, octahedra, and rhombic dodecahedra have been shown to exhibit continuous light absorption and emission band shifts with increasing particle sizes from 10 nm to sub‐microcrystals. They also possess clear facet‐dependent optical properties. Ag3PO4, Ag2O, SrTiO3, and CeO2 crystals show similar optical size and facet effects. Thus, spectral shifts over a broad size range far beyond the quantum‐size regime should be generally observable in many semiconductor materials. Facet‐dependent optical properties of a semiconductor can be understood to arise from the presence of an ultrathin surface layer with subtle bond and orbital level variations for different crystal faces. Although these optical features seem unexpected, they should be the general behaviors of semiconductor crystals. As more examples of these optical effects are available, we will find that these intrinsic properties of semiconductors have been ignored in the past. Furthermore, if valence and conduction band positions are broadly tunable by particle size, the knowledge should have tremendous impacts on the applications of semiconductors, where band energies are important to efficient interfacial charge transfer.  相似文献   

8.
Carbon dioxide (CO2) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu2O) is a promising catalyst for CO2 reduction as it can convert CO2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu2O remains under debate because of the complex surface structure of Cu2O under reducing conditions, leading to limited guidance in designing improved Cu2O catalysts. This paper describes the functionality of surface‐bonded hydroxy groups on partially reduced Cu2O(111) for the CO2 reduction reaction (CO2RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO2RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO2RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination‐unsaturated Cu (CuCUS) sites stabilizes surface‐adsorbed COOH*, which is a key intermediate during the CO2RR. Moreover, the CO2RR was evaluated over Cu2O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu2O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO2RR and suppress the HER.  相似文献   

9.
秦邦  赵玉宝  李辉  邱亮  樊造 《催化学报》2015,(8):1321-1325
Cr(VI)具有高毒性和强诱变致癌性,且能稳定存在于自然界中,对人类和自然环境危害极大.而容易沉淀和吸附在固体上的Cr(III)毒性较小,约为Cr(VI)的千分之一.因此,将Cr(VI)还原为Cr(III)是处理含铬废水的有效途径.光催化还原是一种环境友好的新型技术,基于可见光的催化还原处理含Cr(VI)废水能够在常温常压下进行,具有经济、高效、清洁和无二次污染等特点而受到广泛关注.采用适宜的晶面生长控制剂,调变不同晶面的相对生长速率,可制得暴露不同晶面、具有多种形貌的Cu2O.将这些具有不同晶面的Cu2O用于光催化氧化降解有机污染物的研究表明, Cu2O的光催化氧化性能与其所暴露的晶面密切相关,其表面残留的用作晶面生长控制剂的表面活性剂对其催化性能有重要影响.相对而言,将Cu2O用于光催化还原Cr(VI)的研究较少,关于晶面导向剂油酸对其光催化还原Cr(VI)性能的影响尚未见报道.
  本文采用液相法,首先合成了仅暴露Cu2O{100}晶面的立方体(Cub),进而通过控制晶面导向剂油酸的用量,制得仅外露Cu2O{111}晶面的八面体(OctO)和仅暴露Cu2O{110}晶面的十二面体(RhdO),继而再将OctO和RhdO在C3H6-O2等混合气中于215 oC处理30 min,通过此温和氧化除去表面油酸,获得了具有洁净表面的八面体(Oct)和十二面体(Rhd)的Cu2O.采用X射线衍射(XRD)、扫描电镜(SEM)和傅里叶变换红外光谱(FT-IR)等技术对其物性特征进行了表征.在LED可见光辐照下,对比评价了具有不同晶面的Cu2O光催化还原Cr(VI)的性能,研究了暴露晶面及晶面导向剂油酸等对Cu2O光催化还原Cr(VI)的影响.
  XRD研究表明,采用液相法及温和氧化处理可制得纯相的Cu2O,其XRD图中无Cu及CuO等杂峰出现. SEM观测结果表明,所得Cu2O样品形貌均一性较好,采用丙烯选择氧化去除表面油酸后, Cu2O的形貌无明显改变,仅其外表面略有粗化. FT-IR分析进一步说明,去除表面油酸后,其物相仍为Cu2O,没有出现CuO的红外特征吸收.
  动力学研究结果显示, Cu2O光催化还原Cr(VI)具有准一级反应动力学特征,晶面导向剂油酸的存在能够在一定程度上减缓光腐蚀和酸腐蚀,有助于较长时间内保持Cu2O光催化还原活性,而对Cu2O光催化速率没有影响.以单位比表面积速率常数为比活性指标,不同晶面Cu2O光催化还原Cr(VI)的活性次序为{111}>{110}>{100}. Cu2O不同晶面的原子配位情况差异明显,且{100}晶面的表面能较低,由此可较好解释具有不同晶面Cu2O光催化还原Cr(VI)活性的不同.八面体Cu2O的{111}面上同时存在配位饱和与配位不饱和Cu,而菱形十二面体Cu2O的{110}面上只有配位饱和Cu,立方体Cu2O的{100}面上只有配位不饱和O.相对于Cu2O的{100}晶面,具有更高表面自由能的{111}和{110}晶面易于产生光生电子-空穴对,从而表现出较{100}晶面更高的光催化活性.而Cu2O{111}晶面表现出更高光催化活性的原因可能是: Cu2O{111}晶面上存在的不饱和Cu可作为活性位点,在某种程度上有利于光生电子-空穴对分离,减少光生电子-空穴对复合,从而提高光催化还原速率.  相似文献   

10.
In the work presented here, well‐dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic‐liquid precursors by using 1‐n‐butyl‐3‐methylimidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic‐liquid precursors. By adjusting the molar ratios of Fe(NO3)3 ? 9H2O to [Bmim][H2PO4] as well as the composition of ionic‐liquid precursors, we obtained uniform microstructures such as bipyramids exposing {111} facets, plates exposing {001} facets, hollow spheres, tetragonal hexadecahedron exposing {441} and {111} facets, and truncated bipyamids with carved {001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PO4] played an important role in stabilizing the {111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic‐liquid precursors with different compositions. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton‐like catalysts to uncover the correlation between the surface and the catalytic performance for the photodegradation of organic dyes under visible‐light irradiation. Our measurements indicate that the photocatalytic activity of as‐prepared Fenton‐like catalysts is highly dependent on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton‐like catalysts with different morphologies, and suggest a promising new strategy for crystal‐facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton‐like process.  相似文献   

11.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

12.
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

13.
We report highly facet-dependent electrical properties of Cu(2)O nanocubes and octahedra and significant enhancement of gold nanocrystal cores to the electrical conductivity of Au-Cu(2)O core-shell octahedra. Cu(2)O nanocubes and octahedra and Au-Cu(2)O core-shell cubes and octahedra were synthesized by following our reported facile procedures at room temperature. Two oxide-free tungsten probes attached to a nanomanipulator installed inside a scanning electron microscope made contacts to a single Cu(2)O nanocrystal for the I-V measurements. Pristine Cu(2)O octahedra bounded by {111} facets are 1100 times more conductive than pristine Cu(2)O cubes enclosed by {100} faces, which are barely conductive. Core-shell cubes are only slightly more conductive than pristine cubes. A 10,000-fold increase in conductivity over a cube has been recorded for an octahedron. Remarkably, core-shell octahedra are far more conductive than pristine octahedra. The same facet-dependent electrical behavior can still be observed on a single nanocrystal exposing both {111} and {100} facets. This new fundamental property may be observable in other semiconductor nanocrystals. We also have shown that both core-shell cubes and octahedra outperform pristine cubes and octahedra in the photodegradation of methyl orange. Efficient photoinduced charge separation is attributed to this enhanced photocatalytic activity. Interestingly, facet-selective etching occurred over the {100} corners of some octahedra and core-shell octahedra during photocatalysis. The successful preparation of Au-Cu(2)O core-shell heterostructures with precise shape control has offered opportunities to discover new and exciting physical and chemical properties of nanocrystals.  相似文献   

14.
Herein, we report a facile and convenient method for the synthesis of the porous coordination polymer MOF‐14 [Cu3(BTB)2] (H3BTB=4,4′,4′′‐benzene‐1,3,5‐triyl‐tribenzoic acid) as microcrystals with definite shapes and crystal facets controlled by the reaction medium at room temperature. The amount of sodium acetate added to the reaction system plays a crucial role in the shape evolution of MOF‐14 from rhombic dodecahedrons to truncated rhombic dodecahedrons and cubes with truncated edges and then to cubes. The addition of a base could accelerate the formation rate of crystal growth and increase the supersaturation of crystal growth, thus resulting in the formation of MOF‐14 cube crystals with high‐energy crystal facets. The morphological evolution was also observed for HKUST‐1 [Cu3(BTC)2] (H3BTC=1,3,5‐benzenetricarbocylic acid) from octahedrons to cubes, thus verifying the probable mechanism of the morphological transformation. The gas‐adsorption properties of MOF‐14 with different shapes were studied and reveal that the porous coordination‐polymer microcrystals display excellent and morphology‐dependent sorption properties.  相似文献   

15.
The morphological evolution of uniform Cu(2)O nanocrystals with different morphologies in a weak acetic acid solution (pH = 3.5) has been studied for cubic, octahedral, rhombic dodecahedral, {100} truncated octahedral, and {110} truncated octahedral nanocrystals. Cu(2)O nanocrystals undergo oxidative dissolution in weak acid solution, but their morphological changes depend on the exposed crystal planes. We found that the stability of Cu(2)O crystal planes in weak acid solution follows the order of {100} ? {111} > {110} and determines how the morphology of Cu(2)O nanocrystals evolves. The stable {100} crystal planes remain, and new {100} facets form at the expense of the less stable {111} and {110} crystal planes on the surface of Cu(2)O nanocrystals. Density functional theory calculations reveal that the Cu-O bond on Cu(2)O(100) surface has the shortest bond length. These results clearly exemplify that the morphology of inorganic crystals will evolve with the change of local chemical environment, shedding light on fundamentally understanding the morphological evolution of natural minerals and providing novel insights into the geomimetic synthesis of inorganic materials in the laboratory.  相似文献   

16.
研究了不同组成、结构的BiMo基复合氧化物催化剂的丙烷选择氧化至丙烯醛的性能.X射线衍射(XRD)、X光电子能谱(XPS)、原位傅里叶变换激光拉曼光谱(FT-LRS)、电子顺磁共振(ESR)等多种表征结果表明,BiMo基复合氧化物催化剂上丙烷经由中间物丙烯选择氧化至丙烯醛,催化剂的晶格氧为选择性活性氧物种.丙烷直接氧化下丙烷至丙烯醛的选择性和收率与催化剂的Mo=O物种的氧化-还原性质密切关联,而Mo=O物种的性质又取决于Mo离子的配位环境,Mo=O物种的选择性转化丙烷经由丙烯至丙烯醛活性随畸变MoO6八面体、共顶点八面体、共边八面体、MoO4四面体配位环境递增.组成、结构优化调变的催化剂上丙烷选择氧化至丙烯醛选择性和收率可达45%和13.5%,催化剂中具有选择氧化活性的晶格氧物种数可达258 μmol/g.  相似文献   

17.
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2‐{100} and Ru/TiO2‐{101} are very stable, while Ru/TiO2‐{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal–support interactions (MSIs). The stronger MSIs on the defect‐rich TiO2‐{100} and TiO2‐{101} supports stabilize flat Ru nanoparticles, while on TiO2‐{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2‐{001}.  相似文献   

18.
A novel chain molybdenum compound, {[Mo2O6(C6H5NO2)]·H2O}n, which was synthesized under hydro­thermal conditions, consists of an infinite rail‐like chain formed by molybdenum oxide units linked by zwitterionic nicotinic acid ligands. Each Mo atom is coordinated octahedrally by six O atoms and the MoO6 octahedra are linked to one another via edge‐sharing to produce a zigzag polymeric chain, with nicotinic acid ligands located, alternately, on each side of the rail‐like chain plane.  相似文献   

19.
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper‐derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)‐induced bi‐phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high‐carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high‐carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi‐carbon fuels, including n‐propanol and n‐butane C3–C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface.  相似文献   

20.
In the title complex, {[Cu(C6H5O3)Cl(H2O)]·H2O}n, the CuII atom has a deformed square‐pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five‐membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号