首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site‐selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated C H bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated C H bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N‐fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives.  相似文献   

2.
Pyridine features prominently in pharmaceuticals and drug leads, and methods to selectively manipulate pyridine basicity or metabolic stability are highly sought after. A robust, metal‐free direct fluorination of unactivated pyridylic C?H bonds was developed. This convenient reaction shows high functional‐group tolerance and offers complimentary selectivity to existing C?H fluorination strategies. Importantly, this late‐stage pyridylic C?H fluorination provides opportunities to rationally modulate the basicity, lipophilicity, and metabolic stability of alkylpyridine drugs.  相似文献   

3.
A general catalyzed direct C?H functionalization of s‐tetrazines is reported. Under mild reaction conditions, N‐directed ortho‐C?H activation of tetrazines allows the introduction of various functional groups, thus forming carbon–heteroatom bonds: C?X (X=I, Br, Cl) and C?O. Based on this methodology, we developed electrophilic mono‐ and poly‐ortho‐fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s‐aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho‐functionalized aryltetrazines which are difficult to obtain by classical Pinner‐like syntheses.  相似文献   

4.
An alkoxyl radical guided strategy for site‐selective functionalization of unactivated methylene and methine C?H bonds enabled by an FeII‐catalyzed redox process is described. The mild, expeditious, and modular protocol allows efficient remote aliphatic fluorination, chlorination, amination, and alkynylation of structurally and electronically varied primary, secondary, and tertiary hydroperoxides with excellent functional‐group tolerance. The application for one‐pot 1,4‐hydroxyl functionalization of non‐oxygenated alkane substrates initiated by aerobic C?H oxygenation is also demonstrated.  相似文献   

5.
An asymmetric unactivated alkene/C? H bond difunctionalization reaction for the concomitant construction of C? CF3 and C? O bonds was realized by using a Cu/Brønsted acid cooperative catalytic system, thus providing facile access to valuable chiral CF3‐containing N,O‐aminals with excellent regio‐, chemo‐, and enantioselectivity. Mechanistic studies revealed that this reaction may proceed by an unprecedented 1,5‐hydride shift involving activation of unactivated alkenes and a radical trifluoromethylation to initiate subsequent enantioselective functionalization of C? H bonds. Control experiments also suggested that chiral Brønsted acid plays multiple roles and not only controls the stereoselectivity but also increases the reaction rate through activation of Togni’s reagent.  相似文献   

6.
A rare example of C(sp3)?H functionalization of simple alkanes with unactivated alkenes is presented. In the presence of a copper salt and di‐tert‐butyl peroxide (DTBP), N‐allyl anilines underwent exo‐selective alkylation/cyclization cascade with unactivated alkenic bonds as radical acceptors and simple alkanes as radical precursors, providing a direct access to 3‐alkyl indolines. The present protocol features simple operation, broad substrate scope and great exo selectivity.  相似文献   

7.
Regioselective incorporation of a particular functional group into aliphatic sites by direct activation of unreactive C?H bonds is of great synthetic value. Despite advances in radical‐mediated functionalization of C(sp3)?H bonds by a hydrogen‐atom transfer process, the site‐selective vinylation of remote C(sp3)?H bonds still remains underexplored. Reported herein is a new protocol for the regioselective vinylation of unactivated C(sp3)?H bonds. The remote C(sp3)?H activation is promoted by a C‐centered radical instead of the commonly used N and O radicals. The reaction possesses high product diversity and synthetic efficiency, furnishing a plethora of synthetically valuable E alkenes bearing tri‐/di‐/mono‐fluoromethyl and perfluoroalkyl groups.  相似文献   

8.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C? H bond functionalization process. The reaction favors predominantly the C? H bonds of β‐methyl groups over the unactivated methylene C? H bonds. Moreover, a preference for activating sp3 C? H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C? H bonds was also observed in the cyclometalation step. Additionally, sp3 C? H bonds of unactivated secondary sp3 C? H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

9.
An iron‐catalyzed hydrofluorination of unactivated alkenes has been developed. The use of a multidentate ligand and the fluorination reagent N‐fluorobenzenesulfonimide (NFSI) proved to be critical for this reaction, which afforded various fluorinated compounds in up to 94 % yield.  相似文献   

10.
A copper‐catalyzed intramolecular amidation of unactivated C(sp3)?H bonds to construct indoline derivatives has been developed. Such an amidation proceeded well at primary C?H bonds preferred to secondary C?H bonds. The transformation owned a broad substrate scope. The corresponding indolines were obtained in good to excellent yields. N‐Formal and other carbonyl groups were suitable and were easily deprotected and transformed into methyl or long‐chained alkyl groups. Preliminary mechanistic studies suggested a radical pathway.  相似文献   

11.
In contrast to traditional multistep synthesis, modern organic synthesis extensively depends on the direct functionalization of unactivated C?H bonds for the construction of various C?C and C‐heteroatom bonds in atom‐ and step‐economic manner. Common aliphatic substrates, e. g. carboxylic acids and their synthetic equivalents, are regiospecifically functionalized based on either a directed approach, in which the polar directing group assists to functionalize a specific C?H bond positioned at β‐ and γ‐carbon centers, or a non‐directed approach typically leading to α‐functionalization. While numerous reviews on catalytic C?H functionalization have appeared, a concise review on the direct C(sp3)?H heterofunctionalization of carboxylic acid synthons with Group 16 elements has been awaited. The recent advances on the direct oxy‐functionalization and chalcogenation of aliphatic carboxylic acid synthons enabled by transition metal, organo‐ and photocatalysts are described herein.  相似文献   

12.
The functionalization of C(sp3)?H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C?H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C?H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)?H bonds. For each strategy, the scope, the reactivity of different C?H bonds, the position of the reacting C?H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C?H functionalization reactions and inspire future research in this area.  相似文献   

13.
Chlorine radical, which is classically generated by the homolysis of Cl2 under UV irradiation, can abstract a hydrogen atom from an unactivated C(sp3)?H bond. We herein demonstrate the use of HCl as an effective hydrogen‐atom‐transfer catalyst precursor activated by an organic acridinium photoredox catalyst under visible‐light irradiation for C?H alkylation and allylation. The key to success relied on the utilization of microtubing reactors to maintain the volatile HCl catalyst. This photomediated chlorine‐based C?H activation protocol is effective for a variety of unactivated C(sp3)?H bond patterns, even with primary C(sp3)?H bonds, as in ethane. The merit of this strategy is illustrated by rapid access to several pharmaceutical drugs from abundant unfunctionalized alkane feedstocks.  相似文献   

14.
A AgF‐mediated fluorination with a concomitant cross‐coupling between a gem‐difluoroolefin and a non‐fluorinated olefin is reported. This highly efficient method provides facile access to both α‐CF3 alkenes and β‐CF3 ketones, which otherwise remain challenging to be directly prepared. The application of this method is further demonstrated by the synthesis of bioactive isoxazoline derivatives. This approach represents a conceptually novel route to trifluoromethylated compounds that combines the in situ generation of the CF3 moiety and a C? H functionalization in a single reaction system.  相似文献   

15.
Herein, we report the palladium‐catalyzed direct arylation of unactivated aliphatic C?H bonds in free primary amines. This method takes advantage of an exo‐imine‐type directing group (DG) that can be generated and removed in situ. A range of unprotected aliphatic amines are suitable substrates, undergoing site‐selective arylation at the γ‐position. Methyl as well as cyclic and acyclic methylene groups can be activated. Furthermore, when aniline‐derived substrates were used, preliminary success with δ‐C?H arylation was achieved. The feasibility of using the DG component in a catalytic fashion was also demonstrated.  相似文献   

16.
Insertion of unsaturated systems such as alkynes and olefins into unactivated sp3 C?H bonds remains an unexplored problem. We herein address this issue by successfully incorporating a wide variety of functionalized alkynes and electron‐deficient olefins into the unactivated sp3 C?H bond of pivalic acid derivatives with excellent syn‐ and linear‐ selectivity. A strongly chelating 8‐aminoquinoline directing group proved beneficial for these insertion reactions, while an air‐stable and inexpensive NiII salt has been employed as the active catalyst.  相似文献   

17.
The uranyl dication shows photocatalytic activity towards C(sp3)?H bonds of aliphatic compounds, but not towards those of alkylbenzenes or cyclic ketones. Theoretical insights into the corresponding mechanisms are still limited. Multi‐configurational ab initio calculations including relativistic effects reveal the inherent electron‐transfer mechanism for the uranyl catalyzed C?H fluorination under blue light. Along the reaction path of the triplet state it was found that the hydrogen atom abstraction triggered by the electron‐rich oxygen of the uranyl moiety is the rate‐limiting step. The subsequent steps, that is, N?F and O?H bond breakage in a manner of concerted asynchronicity, generation of the targeted fluorinated product, and recovery of the photocatalyst are nearly barrierless. Moreover the single electron transfer between the reactive substrates plays a fundamental role during the whole photocatalytic cycle.  相似文献   

18.
Herein, we report a regioselective alkenyl electrophile synthesis from unactivated olefins that is based on a direct and regioselective C?H thianthrenation reaction. The selectivity is proposed to arise from an unusual inverse‐electron‐demand hetero‐Diels–Alder reaction. The alkenyl sulfonium salts can serve as electrophiles in palladium‐ and ruthenium‐catalyzed cross‐coupling reactions to make alkenyl C?C, C?Cl, C?Br, and C?SCF3 bonds with stereoretention.  相似文献   

19.
The site‐selective acyloxylation of aliphatic amides was achieved via a copper‐promoted C(sp3)? H bond functionalization process directed by a bidentate ligand. The reaction showed a great preference for activating C? H bonds of β‐methyl groups over those of γ‐methyl and unactivated methylene groups.  相似文献   

20.
Pd/Cu‐catalyzed decarboxylative/direct C?H alkenylations of heteroarenes with α‐fluoroacrylic acid is reported. This method offers step‐economical and stereocontrolled access to valuable heteroarylated monofluoroalkenes as both Z and E isomers, which are known to be useful in the synthesis of fluorinated biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号