首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C K–emission spectra of carbons (graphite, diamond) and graphite fluoride ((CF)n) are calculated with the discrete–variational–Xα method. The numerical recipes are used to get the polarized C K–emission spectra. The results of graphite and diamond are in good agreement with the observed spectra. The difference in intensity between the calculated and observed spectra of graphite fluoride is suggested to be due to the decomposition of (CF)n during the measurement.  相似文献   

2.
邓耿  尉志武 《大学化学》2015,30(3):85-87
碳元素有多种同素异形体,其稳定性可根据能量判据进行判断。一般认为,石墨是标准状况下碳元素最稳定的同素异形体,其标准摩尔生成焓被定为参考值0k J/mol。近来亦有研究说明金刚石在0K下更稳定。一些文献认为富勒烯比石墨更稳定的说法是错误的,应予纠正。  相似文献   

3.
《Electroanalysis》2005,17(18):1627-1634
The behavior of chloride, bromide and iodide at edge plane pyrolytic graphite electrodes has been explored in aqueous acid solutions. The voltammetric response in each case has been compared with that of basal plane pyrolytic graphite, glassy carbon and boron‐doped diamond. The electrochemical oxidation of chloride is found to only occur on boron‐doped diamond while the electrochemical reversibility for the oxidation of bromide on edge plane pyrolytic graphite is similar to that seen at glassy carbon whilst being superior to basal plane pyrolytic graphite and boron‐doped diamond. In the case of iodide oxidation, edge plane and basal plane pyrolytic graphite and glassy carbon display similar electrode kinetics but are all superior to boron‐doped diamond. The analytical possibilities were examined using the edge plane pyrolytic graphite electrode for both iodide and bromine where is was found that, based on cyclic voltammetry, detection limits in the order of 10?6 M are possible.  相似文献   

4.
The concept of non-diamond sp2 impurity states as charge transfer mediators on boron-doped diamond (BDD) surface was suggested as an explanation for the electrochemical behavior of synthetic diamond based electrodes. In order to verify this concept, graphite particles (sp2) were deposited on diamond electrodes (sp3) by mechanical abrasion. The behavior of the so prepared diamond–graphite composite electrodes were compared with those of as-grown (BDDag) and those after mild anodic polarization (BDDmild).Outer-sphere electron transfer processes such as ferri/ferrocyanide (Fe(CN)6III/II) and inner-sphere charge transfer reactions such as 1,4-benzoquinone/hydroquinone (Q/H2Q) were chosen in order to investigate the electrochemical properties of these composite electrodes. Both redox systems became more reversible as the graphite (sp2) loading increased. A strong analogy existed between as-grown diamond electrodes and diamond–graphite composite electrodes.Finally a model is proposed which describes the BDD electrode surface as a diamond matrix in which non-diamond (sp2) impurity states are dispersed. These non-diamond sp2 states on BDD surface acts as charge mediators for both inner-sphere and outer-sphere reactions.  相似文献   

5.
18‐electron compounds REML (RE = rare earth metal; M = Cu, Ag, Au; L = Ge, Sn) can adopt either the stuffed graphite‐like (P63mc) or the stuffed diamond‐like ( ) structure. To understand why one structure is favored over the other, we carried out density functional theory electronic structure calculations for a number of REAuSn compounds. The stuffed graphite‐like and stuffed diamond‐like structures of an 18‐electron compound REAuSn are quite similar in their electronic structures with the Au atoms best described as existing as anions. The diamond‐like REML becomes possible only when the RE3+ ion is small and the M‐L bond is long.  相似文献   

6.
胶溶-水热晶化过程中纳米TiO2相稳定性研究   总被引:1,自引:0,他引:1  
The phase stability of nanocrystaline anatase and rutile TiO2 in sols peptized at different temperature has been studied by X-ray Diffraction (XRD) and thermodynamical analysis. The results show that the stability of nanocrystaline TiO2 of different crystal types is a function of particle size. According to the thermodynamical analysis, anatase TiO2 becomes more stable than rutile TiO2 when the particle size is less than ca. 14 nm, which coincides with the experimental data obtained by XRD. Both surface Gibbs free energy and surface stress play important roles in the thermodynamically phase stability. Comparing the data calculated thermodynamically with the experimental results obtained under different temperatures, it is found that the constant K in the function relation, f=KGS, between surface free energy GS and surface stress f is temperature dependent and equal to 1 at 333 K and 2 at 453 K, respectively.  相似文献   

7.
Temperature dependences of the heat capacities of disordered graphite-like nanostructures prepared by the thermobaric treatment of fullerite C60 (p = 2 and 8 GPa, T = 1373 K) were measured in the temperature ranges from 7 to 360 K in an adiabatic vacuum calorimeter and from 330 to 650 K in a differential scanning calorimeter. At T < 50 K, the dependences obtained were analyzed using the Debye theory of the heat capacity of solids and its multifractal version. The fractal dimensions D were determined and some conclusions on the heterodynamic character of the structures studied were made. The thermodynamic functions C p o T), H o(T) − H o(0), S o(T) − S o(0), and G o(T) − H o(0) were calculated in the temperature range from T → 0 to 610 (650) K. The thermodynamic properties of the graphite-like nanostructures studied and some carbon allotropes were compared. The standard entropies of formation Δf S o of the graphite nanostructures studied and diamond were calculated along with the standard entropies of the reactions of their synthesis from the face-centered cubic phase of fullerite C60 and their interconversions at T = 298.15 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1940–1945, September, 2008.  相似文献   

8.
This paper reports the deposition of diamond-like carbon (DLC) films on Si <100>, using a low energy (1.45 kJ) dense plasma focus assisted sputtering of graphite insert at the tip of the tapered anode. The substrates are placed in front of the anode at different axial and angular positions and are exposed to multiple focus shots. The information regarding the DLC structure is acquired by using Raman spectroscopy. The spectra are characterized by two broad bands known as “G-band” and “D-band”. The results point towards the formation of DLC films with both sp3 (diamond like) and sp2 (graphite like) domains. In X-ray diffraction (XRD) pattern, no additional peak is observed except a peak at 2θ = 69° which corresponds to the silicon (Si) substrate. The intensity of Si peak is reduced after treatment indicating the deposition of amorphous carbon. Scanning electron microscopy (SEM) results demonstrate that the smoothness of the film increases with increasing the substrate angular positions with respect to the anode axis. Energy dispersive X-ray (EDX) analysis reveals that the films deposited at lower axial and angular positions are thicker which is complemented by the cross-sectional views of the films.  相似文献   

9.
LiBC — A Completely Intercalated Heterographite LiBC is a new compound composed only from light main group elements. LiBC is synthesized from the elements in sealed niobium ampoules at 770 K, and short annealing at 1 770 K, forming hexagonal platelets with golden lustre. According to Li+(BC)?, boron and carbon form planar hetero graphite layers of the isoelectronic hexagonal boron nitride type. The inter-layer regions are completely filled by lithium (P63/mmc; a = 275.2 pm; c = 705.8 pm; hP6; ZrBeSi type). The deformation density of the valence electrons prove the π character of the B? C bonds, as well as a polarization according to (BC?). Chemical and physical properties indicate a certain range of homogeneity x(Li) ≤ 1. The thermal decomposition and chemical reactions lead to BC products not yet characterized. The oxidation of LiBC obviously runs by a mechanism similar to that of graphite.  相似文献   

10.
We have designed photodetectors and UV field emitters based on a combination of ZnO nanowires/nanorods (ZNRs) and bilayer diamond films in a metal–semiconductor–metal (MSM) structure. The ZNRs were fabricated on different diamond films and systematic investigations showed an ultra‐high photoconductive response from ZNRs prepared on ultrananocrystalline diamond (UNCD) operating at a lower voltage of 2 V. We found that the ZNRs/UNCD photodetector (PD) has improved field emission properties and a reduced turn‐on field of 2.9 V μm?1 with the highest electron field emission (EFE) by simply illuminating the sample with ultraviolet (UV) light. The photoresponse (Iphoto/Idark) behavior of the ZNRs/UNCD PD exhibits a much higher photoresponse (912) than bare ZNRs (229), ZNRs/nanocrystalline diamond (NCD; 518), and ZNRs/microcrystalline diamond (MCD; 325) under illumination at λ=365 nm. A photodetector with UNCD films offers superior stability and a longer lifetime compared with carbon materials and bare ZNRs. The lifetime stability of the ZNRs/UNCD‐based device is about 410 min, which is markedly superior to devices that use bare ZNRs (92 min). The ZNRs/UNCD PD possesses excellent photoresponse properties with improved lifetime and stability; in addition, ZNRs/UNCD‐based UV emitters have great potential for applications such as cathodes in flat‐panel displays and microplasma display devices.  相似文献   

11.
A new analogue of graphene containing boron, carbon and nitrogen (BCN) has been obtained by the reaction of high‐surface‐area activated charcoal with a mixture of boric acid and urea at 900 °C. X‐ray photoelectron spectroscopy and electron energy‐loss spectroscopy reveal the composition to be close to BCN. The X‐ray diffraction pattern, high‐resolution electron microscopy images and Raman spectrum indicate the presence of graphite‐type layers with low sheet‐to‐sheet registry. Atomic force microscopy reveals the sample to consist of two to three layers of BCN, as in a few‐layer graphene. BCN exhibits more electrical resistivity than graphene, but weaker magnetic features. BCN exhibits a surface area of 2911 m2 g?1, which is the highest value known for a BxCyNz composition. It exhibits high propensity for adsorbing CO2 (≈100 wt %) at 195 K and a hydrogen uptake of 2.6 wt % at 77 K. A first‐principles pseudopotential‐based DFT study shows the stable structure to consist of BN3 and NB3 motifs. The calculations also suggest the strongest CO2 adsorption to occur with a binding energy of 3.7 kJ mol?1 compared with 2.0 kJ mol?1 on graphene.  相似文献   

12.
《Electroanalysis》2005,17(17):1529-1533
The direct electrochemical oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode (EPPG) is investigated and compared with other common carbon‐based electrodes, specifically glassy carbon, boron doped diamond and basal plane pyrolytic graphite. It is found that the EPPG electrode shows a significantly higher degree of electrochemical reversibility than the other electrode substrates giving rise to an analytically optimized limit of detection and sensitivity of 7.1×10?5 M and 0.065 A M?1 respectively.  相似文献   

13.
A QM + MM direct chemical dynamics simulation was performed to study collisions of protonated octaglycine, gly8-H+, with the diamond {111} surface at an initial collision energy E i of 100 eV and incident angle θ i of 0° and 45°. The semiempirical model AM1 was used for the gly8-H+ intramolecular potential, so that its fragmentation could be studied. Shattering dominates gly8-H+ fragmentation at θ i = 0°, with 78% of the ions dissociating in this way. At θ i = 45° shattering is much less important. For θ i = 0° there are 304 different pathways, many related by their backbone cleavage patterns. For the θ i = 0° fragmentations, 59% resulted from both a-x and b-y cleavages, while for θ i = 45° 70% of the fragmentations occurred with only a-x cleavage. For θ i = 0°, the average percentage energy transfers to the internal degrees of freedom of the ion and the surface, and the energy remaining in ion translation are 45%, 26%, and 29%. For 45° these percentages are 26%, 12%, and 62%. The percentage energy-transfer to ΔE int for θ i = 0° is larger than that reported in previous experiments for collisions of des-Arg1-bradykinin with a diamond surface at the same θ i . This difference is discussed in terms of differences between the model diamond surface used in the simulations and the diamond surface prepared for the experiments.  相似文献   

14.
The title compound, lithium aluminium silicide (15/3/6), crystallizes in the hexagonal centrosymmetric space group P63/m. The three‐dimensional structure of this ternary compound may be depicted as two interpenetrating lattices, namely a graphite‐like Li3Al3Si6 layer and a distorted diamond‐like lithium lattice. As is commonly found for LiAl alloys, the Li and Al atoms are found to share some crystallographic sites. The diamond‐like lattice is built up of Li cations, and the graphite‐like anionic layer is composed of Si, Al and Li atoms in which Si and Al are covalently bonded [Si—Al = 2.4672 (4) Å].  相似文献   

15.
Graphite shows great potential as an anode material for rechargeable metal‐ion batteries because of its high abundance and low cost. However, the electrochemical performance of graphite anode materials for rechargeable potassium‐ion batteries needs to be further improved. Reported herein is a natural graphite with superior rate performance and cycling stability obtained through a unique K+‐solvent co‐intercalation mechanism in a 1 m KCF3SO3 diethylene glycol dimethyl ether electrolyte. The co‐intercalation mechanism was demonstrated by ex situ Fourier transform infrared spectroscopy and in situ X‐ray diffraction. Moreover, the structure of the [K‐solvent]+ complexes intercalated with the graphite and the conditions for reversible K+‐solvent co‐intercalation into graphite are proposed based on the experimental results and first‐principles calculations. This work provides important insights into the design of natural graphite for high‐performance rechargeable potassium‐ion batteries.  相似文献   

16.
Temperature‐dependent electric double layer (EDL) and differential capacitance–potential (CdU) curves of the ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIM+/PF6?) were studied on a graphite electrode by molecular dynamics simulations. It was found that all CdU curves were asymmetric camel‐shaped with higher Cd at negative polarization, attributed to the specific adsorption of BMIM+. In addition, the maxima of Cd at the negative polarization decrease monotonically with temperature due to the thicker EDL, whereas at the positive polarization they gradually increase from 450 to 550 K and decrease at 600 K. Such temperature effects at positive polarization may be understood in terms of the competition between two aspects: the weakening specific adsorption of BMIM+ allows more effective screening to the positive charge and overall increasing EDL thickness. Although the former dominates from 450 to 550 K, the latter becomes dominant at 600 K.  相似文献   

17.
X‐ray photoelectron and emission spectra (XPS and XES) of diamond and graphite have been analyzed by deMon density‐functional theory (DFT) calculations using the model adamantane derivative (C10H12(CH3)4) and pyrene (C16H10) molecules, respectively. The theoretical valence photoelectron and C Kα X‐ray emission spectra for the allotrope are in good accordance with the experimental ones. The combined analysis of the valence XPS and C Kα XES enables us to divide the valence electronic distribution into the individual contributions for pσ‐, and pπ‐bonding MOs of the diamond and graphite, respectively. © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 102–108, 2001  相似文献   

18.
The structure and diffusion behavior of 1‐butyl‐3‐methylimidazolium ([bmim]+) ionic liquids with [Cl]?, [PF6]?, and [Tf2N]? counterions near a hydrophobic graphite surface are investigated by molecular dynamics simulation over the temperature range of 300–800 K. Near the graphite surface the structure of the ionic liquid differs from that in the bulk and it forms a well‐ordered region extending over 30 Å from the surface. The bottom layer of the ionic liquid is stable over the investigated temperature range due to the inherent slow dynamics of the ionic liquid and the strong Coulombic interactions between cation and anion. In the bottom layer, diffusion is strongly anisotropic and predominantly occurs along the graphite surface. Diffusion perpendicular to the interface (interfacial mass transfer rate kt) is very slow due to strong ion–substrate interaction. The diffusion behaviors of the three ionic liquids in the two directions all follow an Arrhenius relation, and the activation barrier increases with decreasing anion size. Such an Arrhenius relation is applied to surface‐adsorbed ionic liquids for the first time. The ion size and the surface electrical charge density of the anions are the major factors determining the diffusion behavior of the ionic liquid adjacent to the graphite surface.  相似文献   

19.
The crystal structure of the spin‐canted antiferromagnet β‐p‐NCC6F4CNSSN. at 12 K (reported in this work) was found to adopt the same orthorhombic space group as that previously determined at 160 K. The change in the magnetic properties of these two crystal structures has been rigorously studied by applying a first‐principles bottom‐up procedure above and below the magnetic transition temperature (36 K). Calculations of the magnetic exchange pathways on the 160 K structure reveal only one significant exchange coupling (J(d1)=?33.8 cm?1), which generates a three‐dimensional diamond‐like magnetic topology within the crystal. The computed magnetic susceptibility, χ(T), which was determined by using this magnetic topology, quantitatively reproduces the experimental features observed above 36 K. Owing to the anisotropic contraction of the crystal lattice, both the geometry of the intermolecular contacts at 12 K and the microscopic JAB radical–radical magnetic interactions change: the J(d1) radical–radical interaction becomes even more antiferromagnetic (?43.2 cm?1) and two additional ferromagnetic interactions appear (+7.6 and +7.3 cm?1). Consequently, the magnetic topologies of the 12 and 160 K structures differ: the 12 K magnetic topology exhibits two ferromagnetic sublattices that are antiferromagnetically coupled. The χ(T) curve, computed below 36 K at the limit of zero magnetic field by using the 12 K magnetic topology, reproduces the shape of the residual magnetic susceptibility (having subtracted the contribution to the magnetization arising from spin canting). The evolution of these two ferromagnetic JAB contributions explains the change in the slope of the residual magnetic susceptibility in the low‐temperature region.  相似文献   

20.
In the ternary system silver chloride-lithium chloride-sodium chloride the kinetics of the galvanic deposition of silver on graphite electrodes was investigated as well as its dissolution without current in the molten salt saturated with chlorine gas.In addition the emf-values were measured in the temperature range between 923 K and 1,173 K by means of, the formation cell graphite/Ag(s)/AgCl(l)–LiCl(l)–NaCl(l)/Cl2 graphite From these data the partial molar free excessGibbs energies were calculated. Using the equation for a multicomponent system as suggested byRedlich-Kister 1 G AgCl E values were obtained by a non-linear fitting process, where the fit was performed for all investigated temperatures and over the entire concentration range in the ternary system. With the parameters obtained the partial and integral excess valuesG i E ,G E ,H i E ,H E ,S i E andS E were calculated.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号