首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
The method of the density functional theory is used to study structural transformations between graphites and diamond-like phases. The calculations have been carried out in two approximations: a local density approximation and a generalized gradient approximation. It is found that the phase transitions of hexagonal graphene layers to a cubic diamond and diamond-like phases must occur at uniaxial compressions of ~57–71 GPa, whereas some diamond-like phases can be obtained from tetragonal graphene layers at significantly lower pressures of 32–52 GPa. The X-ray diffraction patterns have been calculated for the phase transition of graphite I41/amd to tetragonal LA10 phase that takes place at the minimum pressure that can be used for experimental identification of these compounds.  相似文献   

2.
The electronic structures and magnetic properties in zinc-blende structure ZnS doped with nonmagnetic noble metal palladium have been investigated by means of density functional theory (DFT) calculations employing the generalised gradient approximation (GGA) and the GGA plus Hubbard U (GGA + U). Both the GGA and GGA + U methods demonstrate half-metallicity in Pd-doped ZnS with total magnetic moments of about 2.0μ B per supercell. The half-metallic ferromagnetism stems from the hybridisation between Pd-4d and S-3p states and could be attributed to a double-exchange mechanism. These results suggest a recipe for obtaining a promising dilute magnetic semiconductor by doping nonmagnetic 4d elements in ZnS matrix.  相似文献   

3.
The structural, mechanical, electronic and thermoelectric properties of the low temperature orthorhombic perovskite phase of CH3NH3PbI3 have been investigated using density functional theory (DFT). Elastic parameters bulk modulus B, Young’s modulus E, shear modulus G, Poisson’s ratio ν and anisotropy value A have been calculated by the Voigt–Reuss–Hill averaging scheme. Phonon dispersions of the structure were investigated using a finite displacement method. The relaxed system is dynamically stable, and the equilibrium elastic constants satisfy all the mechanical stability criteria for orthorhombic crystals, showing stability against the influence of external forces. The lattice thermal conductivity was calculated within the single-mode relaxation-time approximation of the Boltzmann equation from first-principles anharmonic lattice dynamics calculations. Our results show that lattice thermal conductivity is anisotropic, and the corresponding lattice thermal conductivity at 150 K was found to be 0.189, 0.138, and 0.530 Wm?1K?1 in the a, b, and c directions. Electronic structure calculations demonstrate that this compound has a DFT direct band gap at the gamma point of about 1.57 eV. The electronic transport properties have been calculated by solving the semiclassical Boltzmann transport equation on top of DFT calculations, within the constant relaxation time approximation. The Seebeck coefficient S is almost constant from 50 to 150 K. At temperatures 100 and 150 K, the maximal figure of merit is found to be 0.06 and 0.122 in the direction of the c-axis, respectively.  相似文献   

4.
The magnetic properties of Li x CoO2 for x = 0.94, 0.75, 0.66, and 0.51 are investigated within the method combining the generalized gradient approximation with dynamical mean field theory (GGA + DMFT). A delicate interplay between Hund’s exchange energy and t 2g ?e g crystal field splitting is found to be responsible for the high-spin to low-spin state transition for Co4+ ions. The GGA + DMFT calculations show that the Co4+ ions at a small doping level adopt the high-spin state, while delithiation leads to an increase in the crystal field splitting and low-spin state becomes preferable. The Co3+ ions are found to stay in the low-spin configuration for any x values.  相似文献   

5.
Spin polarized ab initio calculations have been carried out to study the structural, electronic, elastic and thermal properties of RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds in B2 structure. The calculations have been performed by using both generalized gradient approximation (GGA) and local spin density approximation (LSDA). The calculated value of lattice constant (a 0) for these compounds with GGA is in better agreement with the experimental data than those with LSDA. Bulk modulus (B), first-order pressure derivative of bulk modulus and magnetic moment (μ B ) are also presented. The energy band structure and electron density of states show the occupancy of 4f states for light as well as heavy rare earth atom. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (G H ) and anisotropy factor (A) are calculated. The ductility or brittleness of these compounds is predicted from Pugh’s rule (B/G H ) and Cauchy pressure (C 12 ? C 44). The Debye temperature (θ D ) is estimated from the average sound velocity, which have not been calculated and measured yet.  相似文献   

6.
We employed density-functional theory (DFT) within the generalized gradient approximation(GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition,mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state,electronic and Mulliken population analysis results. The lattice parameters andP-V EOS for α, β and ω phases revealed by ourcalculations are consistent with other experimental and computational values. The elasticconstants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstableat 0 GPa, but becomes more stable with increasing pressure. Our calculated resultsindicate a phase transition sequence of αωβ forZrTi2. Both thebulk modulus B and shear modulus G increase linearly withincreasing pressure for three phases. The G/B values illustrated goodductility of ZrTi2alloy for three phases, with ω<α<β at0 GPa. The Mulliken population analysis showed that the increment of d electron occupancystabilized the β phase. A low value for B '0 is the feature of EOS for ZrTi2 and this softness in the EOS isrepresentative of pressure induced s-d electron transfer.  相似文献   

7.
In this study, Kondo behavior, electronic structure and magnetic properties of CeRuPO-nano-layer are investigated using the first principles calculations. The calculations are performed by employing the full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). These properties are calculated in the presence of spin-orbit interaction. The exchange-correlation interaction is calculated within generalized gradient approximation (GGA). In addition, the GGA+U approach (where U is the Hubbard correlation term) is also employed to improve treatment of the f-electrons. The calculated partial electron density of states demonstrates that the hybridization between Ce-4f and Ru-5d orbitals and consequently Kondo effect changes at the surface of the CeRuPO-nano-layer compared to the bulk. The results show that due to the weaker Kondo effect at the surface of CeRuPO-nano-layer, the magnetic moment of Ce atoms enhances and the effective mass of the conduction electron reduces.  相似文献   

8.
We present results of the combined study of the magnetic properties of Li2RuO3 by means of nuclear magnetic resonance (NMR) spectroscopy and theoretical dynamical mean-field theory (LDA + DMFT) calculations. The NMR data clearly show the onset of a thermal activation process in the high temperature region, T > 560K, which is tentatively ascribed to the formation of the valence bond liquid. The LDA + DMFT calculations demonstrate that the magnetic response at these temperatures is mostly due to the xz/yz orbitals, while the xy orbitals of Ru still form molecular orbitals. Thus, Ru ions are in the orbital-selective state in the high temperature phase of Li2RuO3.  相似文献   

9.
High pressure evolution of structural, vibrational and magnetic properties of La0.75Ca0.25MnO3 was studied by means of X-ray diffraction and Raman spectroscopy up to 39 GPa, and neutron diffraction up to 7.5 GPa. The stability of different magnetic ground states, orbital configurations and structural modifications were investigated by LDA + U electronic structure calculations. A change of octahedral tilts corresponding to the transformation of orthorhombic crystal structure from the Pnma symmetry to the Immaone occurs above P ~ 6 GPa. At the same time, the evolution of the orthorhombic lattice distortion evidences an appearance of the e g d x² ? z² orbital polarization at high pressures. The magnetic order in La0.75Ca0.25MnO3 undergoes a continuous transition from the ferromagnetic 3D metallic (FM) ground state to the A-type antiferromagnetic (AFM) state of assumedly 2D pseudo-metallic character under pressure, that starts at about 1 GPa and extends possibly to 20–30 GPa.  相似文献   

10.
The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ~3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.  相似文献   

11.
Parameters of the crystal structure and phonon spectra for orthorhombic cadmium titanate with space group Pbnm and its two possible ferroelectrically distorted phases (with space groups Pbn21 and Pb21 m) were calculated from first principles within the density functional theory. The obtained structural parameters and frequencies of Raman- and infrared-active modes are in good agreement with available experimental data for the Pbnm phase. Expansion of the total energy in a Taylor series of two order parameters showed that the ground state of the system corresponds to the Pbn21 structure into which the Pbnm phase transforms through a second-order phase transition without intermediate phases. A substantial discrepancy between calculated and experimentally observed lattice distortions and spontaneous polarization in the polar phase was explained by quantum fluctuations, as well as by existence of twins and competing long-period structures.  相似文献   

12.
Local density approximation (LDA) and Green function effective Coulomb (GW) calculations are performed to investigate the effect of electronic correlations on the electronic properties of both graphene and graphane. The size of band gap in graphane increases from 3.7 eV in LDA to 4.9 eV in GW approximation. By calculating maximally localized Wannier wave functions, we evaluate the necessary integrals to get the Hubbard U and the exchange J interaction from first principles for both graphene and graphane. Our ab-initio estimates indicate that in the case of graphene, in addition to the hopping amplitude t ~ 2.8 eV giving rise to the Dirac nature of low lying excitations, the Hubbard U value of ~8.7 eV gives rise to a super-exchange strength of J AFM ~ 3.5 eV. This value dominates over the direct (ferromagnetic) exchange value of J FM ~ 1.6 eV. This brings substantial Mott-Heisenberg aspects into the problem of graphene. Moreover, similarly large values of the Hubbard and super-exchange strength in graphane suggests that the nature of gap in graphane has substantial Mott character.  相似文献   

13.
In the multiquantum approximation of the orthogonal scheme, specific calculations for the energies and radii of the 4 8 Be nucleus are performed with allowance for all states characterized by the λ=[44] Young diagram, the quantum numbers Kmin and Kmin+2 of the O(3(A?1)) group, and the quantum numbers E=K+2N (N≤9) of the U(3(A?1)) group. The convergence of the results with respect to the extension of the basis is studied, and the structure of relevant wave functions is revealed. The results of these calculations are compared with the results obtained in the analogous approximation of the unitary scheme.  相似文献   

14.
This paper reports on the results of complex investigations into the structural, thermodynamic, and dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic structure with a lattice parameter a=14.02±0.05 Å. The dimeric structure of the studied sample is confirmed by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T → 0 K to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capacity C p 0 (T), the enthalpy H0(T)-H0(0), the entropy S0(T), and the Gibbs function G0(T)-H0(0). The fractal dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2 crystalline dimer from a simple compound (graphite) at T=298.15 K and normal pressure is calculated.  相似文献   

15.
The structural and electronic properties of cubic B x Ga1?x As1?y Bi y alloys with bismuth (Bi) concentration of 0.0625, 0.125, 0.1875 and 0.25 are studied with various boron (B) compositions by means of density functional theory (DFT) within the Wu-Cohen (WC) exchange correlation potential based on generalized gradient approximation (GGA). For all studied alloy structures, we have implemented geometric optimization before the volume optimization calculations. The obtained equilibrium lattice constants and band gap of studied quaternary alloys are investigated for the first time in literature. While the lattice constant behavior changes linearly with boron concentration, increasing small amount of bismuth concentration alter the lattice constant nonlinearly. The present calculation shows that the band gap decreases with increasing bismuth concentration and direct band gap semiconductor alloy became an indirect band gap with increasing boron concentration. From the band offset calculation we have shown that increasing B and Bi concentration in host GaAs reduced the valance band offset in a heterostructure formed by GaAs and studied alloys.  相似文献   

16.
The Ru-Ru spin-singlet formation in La2 ? x L n x RuO5 (Ln = Pr, Nd, Sm, Gd, Dy) was investigated by measurements of the specific heat and magnetic susceptibility. After subtraction of the lattice contribution from the specific heat (C p ), similar excess entropy values were obtained for all compounds. These entropies can be explained by the formation of antiferromagnetic Ru-spin dimers at low temperatures and provide a lower estimate for the intradimer exchange strength. Pronounced changes in the transition temperatures and a broadening of the corresponding peak in C p were observed. These changes depend on the rare-earth element and are due to local structural changes and heterogeneities caused by the substitution. The magnetic susceptibilities can be described by the sum of a rare-earth paramagnetic moment and the susceptibility of the unsubstituted La2RuO5. Density functional theory (DFT) calculations were performed for various compounds to investigate the origin of the magnetic transition and the relationship between structural changes and the spin-dimerization temperature. The combination of the present results with previous structural investigations supports the model of a spin-pairing of the Ru moments which occurs as a reason of the structural phase transition in La2 ? x L n x RuO5.  相似文献   

17.
In this work, we present a systematic study of the occupied and unoccupied electronic states of LaCoO3 compound using DFT, DFT+U and DFT+embedded DMFT methods. The value of U used here is evaluated by using constrained DFT method and found to be ~6.9 eV. It is found that DFT result has limitations with energy positions of PDOS peaks due to its inability of creating a hard gap although the DOS distribution appears to be fine with experimental attributes. The calculated value of U is not an appropriate value for carrying out DFT+U calculations as it has created an insulating gap of ~1.8 eV with limitations in redistribution of DOS which is inconsistent with experimental spectral behavior for the occupied states mainly. However, this value of U is found to be an appropriate one for DFT+embedded DMFT method which creates a gap of ~1.1 eV. The calculated PDOS of Co 3d, La 5d, La 4f and O 2p states are giving a remarkably good explanation for the occupied and unoccupied states of the experimental spectra in the energy range ~–9.0 eV to ~12.0 eV.  相似文献   

18.
LSDA + U + SO calculations of the electronic structure of helicoidal Fe1 - xCo x Si ferromagnets within the virtual crystal approximation have been supplemented with the consideration of the Dzyaloshinski-Moriya interaction and ferromagnetic fluctuations of the spin density of collective d electrons with the Hubbard interactions at Fe and Co atoms randomly distributed over sites. The magnetic-state equation in the developed model describes helicoidal ferromagnetism and its disappearance accompanied by the occurrence of a maximum of uniform magnetic susceptibility at temperature T C and chiral fluctuations of the local magnetization at T > T C . The reasons why the magnetic contribution to the specific heat at the magnetic phase transition changes monotonically and the volume coefficient of thermal expansion (VCTE) at low temperatures is negative and has a wide minimum near T C have been investigated. It is shown that the VCTE changes sign when passing to the paramagnetic state (at temperature T S ).  相似文献   

19.
20.
The effect of white and UV radiation on the phase composition of amorphous CN x films are studied by X-ray diffraction analysis and visible-range spectroscopy. The films have variable-range atomic order and consist of amorphous graphite clusters (30 Å) crystalline clusters (50–100 Å) of graphite, diamond, and carbon nitride phases; and intercluster medium with long-range (1–2 Å) atomic order. It is shown that irradiation of the films by white light facilitates the growth of fine graphite clusters. Irradiation by UV light suppresses the growth of the graphite and carbon nitride phases, favoring the growth of the diamond phase (1.5%). It is demonstrated that a change in the mesoscopic phase composition of the CN x films causes a change in the energy gap width in the visible range from E g = 0.75 eV for the films irradiated by white light to E g = 1.75 eV for those exposed to UV radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号