首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Reactions of R4Sb2 (R = Me, Et) with (Me3SiCH2)3M (M = Ga, In) and Crystal Structures of [(Me3SiCH2)2InSbMe2]3 and [(Me3SiCH2)2GaOSbEt2]2 The reaction of (Me3SiCH2)3In with Me2SbSbMe2 gives [(Me3SiCH2)2InSbMe2]3 ( 1 ) and Me3SiCH2SbMe2. [(Me3SiCH2)2GaOSbEt2]2 ( 2 ) is formed by the reaction of (Me3SiCH2)3Ga with Et2SbSbEt2 and oxygen. The syntheses and the crystal structures of 1 and 2 are reported.  相似文献   

2.
Preparations and Properties of Tris(perfluoroalkyl) Arsenic and Antimony(III, V) Compounds As(Rf)3 and Sb(Rf)3 (Rf?C2F5, C4F9, C6F13) are prepared in good yields by the polar reactions of AsCl3 and SbCl3 with bis(perfluoroalkyl) cadmium compounds as colourless liquids or solids. The oxidation of As(C2F5)3 and Sb(C2F5)3 with XeF2 gives the difluorides M(C2F5)3F2 (M?As, Sb). As(C2F5)3Cl2 is prepared by chlorination of As(C2F5)3 in the presence of AlCl3, while Sb(C2F5)3Cl2 is formed in the reaction of Sb(C2F5)3F2 with (CH3)3SiCl. During the reaction of M(C2F5)3F2 with (CH3)3SiBr 19F-NMR spectroscopic evidence is found for M(C2F5)3 Br2. The thermal decompositions of M(C2F5)3F2 mainly yield C4F10 and M(C2F5)F2, while the thermal decompositions of M(C2F5)3Cl2 yield M(C2F5)2Cl and C2F5Cl. The properties and spectroscopic data of the new compounds are described.  相似文献   

3.
Four NNN tridentate ligands L1–L4 containing 2‐methoxypyridylmethene or 2‐hydroxypyridylmethene fragment were synthesized and introduced to ruthenium centers. When (HOC5H3NCH2C5H3NC5H7N2) (L2) and (HOC5H3NCH2C5H3NC6H6N3) (L4) reacted with RuCl2(PPh3)3, two ruthenium chloride products Ru(L2)(PPh3)Cl2 ( 1 ) and Ru(L4)(PPh3)Cl2 ( 2 ) were isolated, respectively. Reactions of (MeOC5H3NCH2C5H3NC5H7N2) (L1) and (MeOC5H3NCH2C5H3NC6H6N3) (L3) with RuCl2(PPh3)3 in the presence of NH4PF6 generated two dicationic complexes [Ru(L1)2][PF6]2 ( 3 ) and [Ru(L3)2][PF6]2 ( 4 ), respectively. Complex 1 reacted with CO to afford product [Ru(L2)(PPh3)(CO)Cl][Cl]. The catalytic activity for transfer hydrogenation of ketones was investigated. Complex 1 showed the highest activity, with a turnover frequency value of 1.44 × 103 h?1 for acetophenone, while complexes 3 and 4 were not active.  相似文献   

4.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

5.
Phosphaneimine and Phosphoraneiminato Complexes of Magnesium. The Crystal Structures of [MgBr1,25I0,75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2], [Mg2I2(Me3SiNPMe2CH2)(Me3SiNPMe2CH2CH(Me)O)(OEt2)], and [MgBr(NPMe3)]4 · C7H8 By reactions of the silylated phosphaneimine Me3SiNPMe3 with the Grignard reagents EtMgBr and MeMgI, respectively, the carbanionic phosphoraneiminato derivatives [XMg(CH2PMe2NSiMe3)]n (X ? Br, I) can be isolated as main products. The by-products of these reactions, [MgBr1.25I0.75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2] and [Mg2I2(CH2PMe2NSiMe3)(O(Me)CHCH2PMe2NSiMe3)(OEt2)] were identified by crystal structure determinations. The phosphoraneiminato complex [MgBr(NPMe3)]4 · C7H8 with hetero cubane structure is formed by a metathesis reaction of [ZnBr(NPMe3)]4 with RMgBr (R ? Ph. Mes).  相似文献   

6.
Reactivity, in the solid state between Ag2S and Ag2CrO4, was investigated by DTA, XRD and IR methods. It was found that, according to a composition of an initial Ag2S/Ag2CrO4 mixture, the products of a reaction of Ag2S with Ag2 CrO4 can be: solid solution with Ag2CrO4 structure (Ag2Cr1–xSxO4) and AgCrO2; or solid solution Ag2Cr1–xSxO4, Ag2SO4, AgCrO2 and metallic silver; or Ag2S, β-Ag8S4O4, Ag, AgCrO2, Ag2SO4 and Ag2Cr1–xSxO4 solid solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The reaction between Cl2Te(NSO)2, Cl6Te2N2S and Cl2Te(N=S=N)2TeCl2 with MCl3 provided the compounds [(Cl2Te)2N+][MCl4] (M = Ga, Al, Fe). Treating Cl6Te2N2S with M′Cl3 yielded besides [(Cl2Te)2N+][M′Cl4] (M′ = Al, Fe) the sulfur containing compound [ClTeNSNS+][M′Cl4]. The structure for [ClTeNSNS+][FeCl4] was established by an X‐ray structure analysis. With Te(NSO)2 and CF3SCl, via Cl2Te(NSO)2, the known compound Te2NCl5 was formed. Tetrafluoroditelluradiazetidine was obtained from TeF4 and [(CH3)3Si]2NH which on treating with (CH3)3SiCl provided the corresponding chloroderivative. In addition metathetical reaction between Cl2TeNSNS and CF3C(O)OAg yielded [CF3C(O)O]2TeSNSN. Similarly (CH3)2Te(NSO)2–xClx (x = 0,1) and (CH3)2Te(NCO)2 were made from (CH3)2TeCl2 and AgNSO or AgNCO, respectively. Halogination of Cl2Te(N=S=N)2TeCl2 with Cl2 or Br2 yielded Cl6Te2N2S and Cl4Br2Te2N2S. The bromoderivate was also prepared from Cl2Te(NSO)2 and Br2. AgNSO was synthesized by treating CF3C(O)OAg with (CH3)3SiNSO. Two other synthons (CF3Se)2Te and (CF3S)2Se were obtained from CF3SeCl and Na2Te and from Hg(SCF3)2 plus SeCl4, respectively.  相似文献   

8.
Three high‐nuclearity Ni‐substituted polyoxotungstates (POTs)—[Ni(enMe)2(H2O)2]2[Ni(H2O)6]2‐ [Ni(enMe)2][Ni(H2O)2]1.5[HNi20X4W34‐ (OH)4O136(H2O)6(enMe)8] ? 11 H2O ( 3 ), [Ni(en)2(H2O)]2[H8Ni21X4W34(OH)4‐ O136(en)10(H2O)5] ? 22 H2O ( 4 ), and [Ni‐(enMe)2]2[H6Ni22X4W34(OH)4O136(H2O)6(enMe)10] ? 18 H2O ( 5 ), in which en=ethylenediamine, enMe=1,2‐diaminopropane, X=0.5 P+0.5 Ge—were made under hydrothermal conditions and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The structures of 3 – 5 can be viewed as novel derivatives of [H6Ni20P4W34(OH)4O136(enMe)8‐ (H2O)6] ? 12 H 2O ( 1 ) and [Ni(en)2‐ (H2O)]2[H8Ni20P4W34(OH)4O136(en)9‐ (H2O)4] ? 16 H 2O ( 2 ), which both contain 20 nickel ions per structural unit. Compound 3 is the first example of a 1D cluster chain constructed from Ni20‐substituted polyanions [HNi20X4‐ W34(OH)4O136(H2O)6(enMe)8]11? and [Ni(enMe)2]2+ bridges. Compound 4 is a novel cluster–organic chain built by Ni21‐substituted polyanions [H8Ni21X4W34(OH)4O136(en)10(H2O)5]4? and en molecule bridges. Compound 5 is a discrete POT with 22 Ni centers, and is not only the largest nickel‐substituted POT, but also contains the highest number of nickel ions in one polyanion to date. Magnetic measurements illustrate that overall ferromagnetic interactions exist in 1 – 5 . The magnetic behavior of 1 and 2 was theoretically simulated by the MAGPACK magnetic program package.  相似文献   

9.
Symmetrical and asymmetrical triphenylene discotic liquid crystals with two kinds of different peripheral chains, sym-TP(OC11H23)3(O2CR)3 and asym-TP(OC11H23)3(O2CR)3, (R=CH2OC2H5, CH2OC3H7, CH2OC4H9, CH2OC5H11, C3H7, C4H9, C5H11, C6H13, C7H15) were synthesized. Their thermotropic liquid crystalline properties were studied by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The results showed that the asymmetrical compounds had higher melting and clearing points than that of their corresponding symmetrical compounds. For the same series of compounds, TP(OC11H23)3(O2CR)3, their melting points decrease and clearing points increase gradually with the lengthening of ester chains. Most of the β-oxygen containing esters of triphenylene derivatives, TP (OC11H23)3(O2CR)3, (R=CH2OC2H5, CH2OC3H7, CH2OC4H9, CH2OC5H11), symmetrically or asymmetrically attached on triphenylene cores, have higher melting and clearing points than those of triphenylene derivatives, TP(OC11H23)3(O2CR)3, (R=C4H9, C5H11, C6H13, C7H15), with the same length of peripheral chains. The triphenylene derivatives with longer peripheral chains have shown mesophase at room temperature. __________ Translated from Chemical Research and Application, 2007, 19(10) (in Chinese)  相似文献   

10.
Fluoridolysis of Cyclophosphazenes and Lineary Polyphosphazenes The fluorination of nongeminal trans P3N3Cl4(NEt2)2 and nongeminal trans P3N3Cl3(NEt2)3 with the fluorination agent Et3N · 0,6 HF ( B ) occurs under retention of configuration yielding P3N3Cl2F2(NEt2)2 and P3N3F4(NEt2)2 or P3N3F3(NEt2)3, respectively. P3N3Cl6 is nearly quantitatively converted into P3N3F6. Poly(dichlorophosphazene) reacts to a poly(difluorophosphazene), (PNF2)n, distinguished by a moderate solubility in THF.  相似文献   

11.
Bromoplumbates with One‐dimensional Polymeric and Isolated Anions: (Bzl4P)2[Pb3Br8], (Bzl4P)2[Pb3Br8(dmf)2], (Bzl4P)[PbBr3], (Bzl4P)2[PbBr4], and (Bzl4P)4[Pb2Br6][PbBr4] PbBr2 reacts with LiBr and (Bzl4P)(PF6) (Bzl = CH2C6H5) in acetone to form a series of bromoplumbate complexes with compositions and structures depending on the conditions of reaction and crystallization. While the anions in (Bzl4P)2[Pb3Br8] ( 1 ) and (Bzl4P)[PbBr3] ( 2 ) are one‐dimensional polymers with penta‐ and hexacoordinated Pb atoms, the metal atoms in the mono‐ and dinuclear complex anions of (Bzl4P)2[PbBr4] · 2acetone ( 3 · 2acetone) and (Bzl4P)4[Pb2Br6][PbBr4] ( 4 ) bind to four bromo ligands. From DMF as a solvent (Bzl4P)2[Pb3Br8(dmf)2] ( 1 b ) crystallizes with the same bromoplumbate structure as in 1 a , but with dmf ligands occupying the coordination sites vacant in 1 a . Upon radiation of compound 3 with ultraviolet light greenish yellow photoluminescence (emssion maximum at 547 nm) is observed. Crystallographic details see “Inhaltsübersicht”.  相似文献   

12.
A method of calculation of average heat capacities of phase transformation products of complex oxides is suggested. The method takes into account the physical state of products and the increase in the heat capacities of products due to the change of entropy at a phase transformation. Average heat capacities of products formed in a congruous melting of compounds (YCuO2 and Y4Ba3O9), in an incongruous melting of compounds (Y2Cu2O5, BaCuO2, BaCu2O2, Y2BaCuO5, YBa2Cu3O7, YBa2Cu3O6) and in a decomposition in a crystalline state of compounds (Y2BaO4, Y2Ba2O5, Y2Ba4O7, Ba2CuO3, Ba3Cu5O8, YBa2Cu3.5O7.5, YBa2Cu4O8, YBa2Cu5O9) was estimated by using three methods.  相似文献   

13.
Chloroselenates with Di- and Tetravalent Selenium: 77Se-NMR-Spectra, Syntheses, and Crystal Structures of (PPh4)2SeCl6 · 2 CH2Cl2, (NMe3Ph)2SeCl6, (K-18-crown-6)2SeCl6 · 2 CH3CN, PPh4Se2Cl9, (NEt4)2Se2Cl10, (PPh4)2Se3Cl8 · CH2Cl2, and (PPh4)2Se4Cl12 · CH2Cl2 The title compounds were obtained from reactions of selenium and selenium tetrachloride with PPh4Cl, NEt4Cl, NMe3PhCl, or (K-18-crown-6)Cl in dichloromethane or acetonitrile. (PPh4)2Se3Cl8 · CH2Cl2 was also formed from GeSe, PPh4Cl and chlorine in acetonitrile. The 77Se-NMR spectra of the solutions show the presence of dynamical equilibria which, depending on composition, mainly contain SeCl2, SeCl4, Se2Cl2, SeCl62–, Se2Cl62–, and/or Se2Cl102–. Solutions of AsCl3 and (PPh4)2Se4 in acetonitrile upon chlorination with Cl2 or PPh4AsCl6 yielded (PPh4)2Se2Cl6, while (PPh4)2As2Se4Cl12 was the product after chlorination with SOCl2. According to the X-ray crystal structure analyses the ions SeCl62–, Se2Cl9, and Se2Cl102– have the known structures with octahedral coordination of the Se atoms. The structure of the Se3Cl82– ion corresponds to that of Se3Br82– consisting of three SeCl2 molecules associated via two Cl ions. (PPh4)2Se4Cl12 · CH2Cl2 is isotypic with the corresponding bromoselenate and contains anions in which three SeCl2 molecules are attached to a SeCl62– ion; there is a peculiar Se–Se interaction.  相似文献   

14.
A cobalt-poor or iron rich bicomponent mixture of Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 anode materials have been successfully prepared using simple, cost-effective, and scalable urea-assisted auto-combustion synthesis. The threshold limit of lower cobalt stoichiometry in CoFe2O4 that leads to impressive electrochemical performance was identified. The electrochemical performance shows that the Co0.9Fe2.1O4/Fe2O3 electrode exhibits high capacity and rate capability in comparison to a Co0.8Fe2.2O4/Fe2O3 electrode, and the obtained data is comparable with that reported for cobalt-rich CoFe2O4. The better rate performance of the Co0.9Fe2.1O4/Fe2O3 electrode is ascribed to its unique stoichiometry, which intimately prefers the combination of Fe2O3 with Co1−xFe2+xO4 and the high electrical conductivity. Further, the high reversible capacity in Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 electrodes is most likely attributed to the synergistic electrochemical activity of both the nanostructured materials (Co1−xFe2+xO4 and Fe2O3), reaching beyond the well-established mechanisms of charge storage in these two phases.  相似文献   

15.
The Courses of the Ammonolyses of the Ammonium Hexafluorometalates of Aluminum, Gallium, and Indium, (NH4)3MF6 (M = Al, Ga, In) The courses of the ammonolysis reactions of the ammonium hexafluorometalates (NH4)3MF6 (M = Al, Ga, In) were investigated with the aid of in‐situ powder diffractometry and differential thermal analysis. Under these conditions, the reaction of (NH4)3AlF6 with gaseous ammonia yields at about 360 °C AlF3 via the intermediates NH4AlF4, Al(NH3)2F3 and Al(NH3)F3. The ammonolysis of (NH4)3GaF6 produces GaN at about 400 °C. Depending upon the actual reaction conditions, the intermediates NH4GaF4 and Ga(NH3)F3 as well as their ammonia adducts NH4GaF4 · NH3 and Ga(NH3)2F3 and the amide‐ammoniate Ga(NH3)(NH2)F2 are observed. In the case of (NH4)3InF6 the intermediates (NH4)3InF6 · NH3 and In(NH3)F3 may exist; there are also indications for the reduction of In(III) to In(I) and for the existence of In(NH3)2F and InF as products of the ammonolysis of (NH4)3InF6.  相似文献   

16.
C6F5I(CN)2 and x‐FC6H4I(CN)2 (x = 2, 3, 4) were isolated from reactions of the corresponding aryliodine difluorides ArIF2 and a stoichiometric excess of Me3SiCN in CCl3F (0 °C) or CH2Cl2 (20 °C), respectively. In addition, x‐FC6H4I(CN)2 compounds were synthesized in good yields on alternative routes, namely from 3‐ or 4‐FC6H4I(OC(O)CH3)2 or 4‐FC6H4I(OC(O)CF3)2 or from 4‐FC6H4IO and Me3SiCN in CH2Cl2 at 20 °C. In the 1 : 1 reaction of C6F5IF2 and Me3SiCN a lower temperature was necessary to suppress partial disubstitution and to obtain the first example of a new type of aryliodine(III) cyanide compounds, C6F5I(CN)F. 4‐FC6H4I(CN)F could be isolated from the equimolar reaction of 4‐FC6H4IF2 and Me3SiCN in CH2Cl2 even at 20 °C. The new products were characterized by multi‐NMR and Raman spectroscopy. The molecular structures of C6F5I(CN)2, 3‐ and 4‐FC6H4I(CN)2, C6F5I(CN)F, and 4‐FC6H4I(CN)F are discussed and compared with that of C6F5IF2. The reactivity of C6F5I(CN)F towards fluoride acceptors EFn (BF3, AsF5) and RxEX?x (C6F5SiF3, C6H5SiF3, C6H5PF4, Me3SiCl, Me3SiC6F5) were investigated and showed differing reaction patterns (fluoride abstraction, aryl transfer, chloride transfer). Besides the molecular entities C6F5I(CN)F and C6F5I(CN)Cl, the corresponding iodonium salts [C6F5(CN)I][BF4] and [C6F5(CN)I][AsF6] were isolated. The thermal stability of ArI(CN)2 and ArI(CN)F, neat and in solution, as well as the reactivity of 4‐FC6H4I(CN)2 towards the Lewis acid BF3 are reported.  相似文献   

17.
通过高温固相法对醋酸镧(C6H9O6La·xH2O)与高钼酸铵((NH46Mo7O24·4H2O)在一定条件下热解制备非Pt催化剂La2Mo2O7(La2O3-2MoO2)。进一步采用2种方法将La2Mo2O7与多壁碳纳米管(MWCNTs)进行复合,一种是将La2Mo2O7喷涂到MWCNTs表层之上得到La2Mo2O7/MWCNTs,另一种是将两者均匀混合掺杂得到La2Mo2O7@MWCNTs,再将上述2种复合材料应用于染料敏化太阳能电池对电极进行相应研究。通过扫描电子显微镜(SEM)表征了复合催化材料的微观形貌,X射线衍射(XRD)确定了微观结构。采用电流密度-光电压曲线、循环伏安,交流阻抗以及塔菲尔极化分析了材料的光电性能。实验结果表明在电解液I3-/I-中,基于La2Mo2O7/MWCNTs与La2Mo2O7@MWCNTs的对电极,相同的条件下在光电池中获得的光电转换效率分别为6.09%和4.84%,明显高于MWCNTs的3.94%和La2Mo2O7的0.87%。电极性能的提高可归因于La2Mo2O7复合催化剂相对大的比表面积和高导电性。  相似文献   

18.
Abstract

The reactions of hexachlorocyclotriphosphazatriene, N3 P3 CI6, with 2, 2-dimethylpropane-1, 3-diol yield monospiro-, N3 P3 Cl4 [(OCH2)2 CMe2, dispiro-, N3 P3 Cl4((OCH2)2CMe2|2, and trispiroderivatives, N3 P3 ((OCH2)2, CMe2]3. An ansa, N3 P3 CI4 [(OCH2)2 CMe2]2 and a spiro-ansa, N3 P3 Cl2- ((OCH2), CMe2,]2 and a doubly-bridged compound, (N3 P3 Cl4,)2[(OCH2)]2 were also isolated. Product types and relative yields were compared with those arising from propane-1, 3-diol. The yields of ansa products from the reactions of the dimethyl diol seem to be considerably enhanced relative to those of its unmethylated analogue. 31P and 1H n.m.r. spectra are reported.  相似文献   

19.
The cloud points (CPs) of the copolymers 17R4 and L64 were first measured, and then the effects of salts ((NH4)3C6H5O7, K3C6H5O7) on 17R4 and L64 were researched. After finishing the work described above, the temperature (278.15, 283.15, and 288.15) K of aqueous two-phase systems was determined, which consist of 17R4-(NH4)3C6H5O7, 17R4-K3C6H5O7, L64-(NH4)3C6H5O7, and L64-K3C6H5O7. Finally, the liquid–liquid equilibrium (LLE) data of binodal curve and the tie line for 17R4-(NH4)3C6H5O7 aqueous two- phase systems (ATPSs) 17R4-K3C6H5O7 ATPSs, L64-(NH4)3C6H5O7 ATPSs, and L64-K3C6H5O7 ATPSs were obtained. Nonlinear fitting of the empirical equation was used for making the diagram. The results showed that the change in the size of the two-phase areas increases with the increase of temperature. The capacity of the salts to induce phase segregation follows the Hofmeister series, that is, K3C6H5O7?>?(NH4)3C6H5O7. In addition, the findings also showed that the phase separation ability of 17R4 is better than that of L64.  相似文献   

20.
Synthesis, X‐Ray Structure, and Multinuclear NMR Investigation of some intramolecularly Nitrogen stabilized Organoboron, ‐aluminum, and ‐gallium Compounds The intramolecularly nitrogen stabilized organoaluminum‐ and organoboron compounds Me2Al(CH2)3NMe2 ( 1 ), Me2AlC10H6‐8‐NMe2 ( 2 ), iPr2Al(CH2)3NEt2 ( 3 ), (CH2)5Al(CH2)3NMe2 ( 4 ), and (CH2)5B(CH2)3NMe2 ( 5 ) are synthesized from Me2AlCl and the corresponding organolithium compounds and from AlCl3 or BCl3, the lithium alkyl and iPrMgCl or BrMg(CH2)5MgBr, respectively. AlCl3 and GaCl3 react with Li(CH2)3NMe2 or LiCH2CHMeCH2NMe2 forming Cl2AlCH2CHMeCH2NMe2 ( 6 ), Cl2Al(CH2)3NMe2 ( 8 ), and Cl2Ga(CH2)3NMe2 ( 9 ). The reaction of 6 and of 8 or 9 with BrMg(CH2)5MgBr and BrMg(CH2)6MgBr, respectively, yields (CH2)5AlCH2CHMeCH2NMe2 ( 7 ), (CH2)6Al(CH2)3NMe2 ( 10 ), and (CH2)6Ga(CH2)3NMe2 ( 11 ). MeAlCl2, made by the redistribution reaction of AlCl3 with Me2AlCl, reacts with 2 equivalents of Li(CH2)3NMe2 yielding MeAl[(CH2)3NMe2]2 ( 12 ) and with MeN[(CH2)3MgCl]2 under formation of MeAl[(CH2)3]2NMe ( 13 ). MeAlCl2, MeGaCl2, or GaCl3 accordingly react with one equivalent of organolithium reagent to give the intramolecularly nitrogen stabilized organoaluminum and organogallium chlorides MeClAl(CH2)3NMe2 ( 14 ), MeClGa(CH2)3NMe2 ( 15 ), MeClGaC6H4‐2‐CH2NMe2 ( 16 ) as well as Cl2GaC6H4‐2‐CHMeNMe2 ( 17 ). The compounds were characterized by elemental analyses, mass spectroscopy, 1H, 11B, 13C and 27Al NMR investigations. Single crystal X‐ray structure analyses of 1 , 2 , 4 , 5 and 17 reveal the monomeric molecular structures with intramolecular nitrogen coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号