首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The density functional theory (DFT) based hard-soft acid-base (HSAB) reactivity indices, including the electrophilicity index, have been successfully applied to many areas of molecular chemistry. In this work we test the applicability of such an approach to fundamental surface chemistry. We have considered, as prototypical surface reactions, both the hydrogenation of atomic nitrogen and the dissociative adsorption of the NH molecular radical. By use of a DFT methodology, the minimum energy reaction pathways, and corresponding reaction barriers, of the above reactions over Zr(001), Nb(110), Mo(110), Tc(001), Ru(001), Rh(111), and Pd(111) have been determined. By consideration of the chemical potential and chemical hardness of the surface metal atoms, and the principle of electronegativity equalization, it is found that the charge transferred to the NH radical during the process of dissociative adsorption correlates very well with that determined by Mulliken population analysis. Furthermore, it is found that the stability of the NH/surface transition state complex relates directly to this charge transfer and that the trend in transition state stability predicted by a HSAB treatment correlates very strongly with that determined by DFT calculations. With regards to N hydrogenation, we find that during the course of the reaction, H loses cohesion to the surface, as it must migrate from a 3-fold hollow site to either a bridge or top site, to react with N. Partial density of states (PDOS) and Mulliken population analysis reveal that this loss of bonding is accompanied by charge transfer from H to the surface metal atoms. Moreover, by simple modeling, we show that the reaction barriers are directly proportional to this mandatory charge transfer. Indeed, it is found that the reaction barriers correlate very well with the electrophilicity index of the metal atoms.  相似文献   

2.
Ammonia synthesis on three metal surfaces (Zr, Ru, and Pd) is investigated using density functional theory calculations. In addition to N(2) dissociation, all the transition states of the hydrogenation reactions from N to NH(3) are located and the reaction energy profiles at both low and high surface coverages are compared and analyzed. The following are found: (i) Surface coverage effect on dissociation reactions is more significant than that on association reactions. (ii) The difference between N and H chemisorption energies, the so-called chemisorption energy gap which is a measure of adsorption competition, is vital to the reactivity of the catalysts. (iii) The hydrogenation barriers can considerably affect the overall rate of ammonia synthesis. A simple model to describe the relationship between dissociation and association reactions is proposed.  相似文献   

3.
Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H(2)S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H(2)S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H(2)S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed.  相似文献   

4.
The hydrogenation of nitrogen (N(ads)+H(ads)-->NH(ads)) on metal surfaces is an important step in ammonia catalysis. We investigate the reaction dynamics of this hydrogenation step by time independent scattering theory and variational transition state theory (VTST) including tunneling corrections. The potential energy surface is derived by hybrid density functional theory on a model cluster composed of 12 ruthenium atoms resembling a Ru(0001) surface. The scattering calculations are performed on a reduced dimensionality potential energy hypersurface, where two dimensions are treated explicitly and all others are included implicitly by the zero-point correction. The VTST calculations include quantum effects along the reaction coordinate by applying the small curvature tunneling scheme. Even at room temperature (where ruthenium already shows catalytic activity) we find rate enhancement by tunneling by a factor of approximately 70. Inspection of the reaction probabilities shows that the major contribution to reactivity comes from the vibrational ground state of the reactants into vibrationally excited product states. The reaction rates are higher than determined in previous studies, and are compatible with experimental overall rates for ammonia synthesis.  相似文献   

5.
Substituent effects have been used to probe the characteristics of the transition state to hydrogenation of alkyl groups on the Pt(111) surface. Eight different alkyl and fluoroalkyl groups have been formed on the Pt(111) surface by dissociative adsorption of their respective alkyl and fluoroalkyl iodides. Coadsorption of hydrogen and alkyl groups, followed by heating of the surface, results in hydrogenation of the alkyl groups to form alkanes, which then desorb into the gas phase. Temperature-programmed reaction spectroscopy was used to measure the barriers to hydrogenation, DeltaE(H)(double dagger), which are dependent on the size of the alkyl group (polarizability) and the degree of fluorination (field effect). This example is one of only two surface reactions for which the influence of the substituents on DeltaE(H)(double dagger) has been correlated with both the field and the polarizability substituent constants of the alkyl groups in the form of a linear free energy relationship. Increasing both the field and the polarizability constants of the alkyl groups increases the value of DeltaE(H)(double dagger). The substituent effects are quantified by a field reaction constant of rho(F) = 27 +/- 4 kJ/mol and a polarizability reaction constant of rho(alpha) = 19 +/- 3 kJ/mol. These suggest that the transition state for hydrogenation is slightly cationic with respect to the alkyl group on the Pt(111) surface, RC + H <--> {RC(delta+)...H}(double dagger).  相似文献   

6.
为了揭示辅酶PQQ结构与反应性的关系,在B3LYP/D95(d, p)水平上对一系列PQQ模型化合物及其类似物与氨的亲核加成进行了理论计算.结果表明:对单羰基体系,羰基碳的亲电性对反应能垒有重要的影响;对双羰基体系,过渡态中邻位羰基氧与亲核试剂氨上的H形成的氢键对反应的活化能起着关键的作用;稠合芳香环本身对反应的能垒影响不大,但当稠合杂环的1-位为可提供氢键受体的N原子时,由于N1与氨上H原子间可形成氢键而进一步降低反应的活化能.发现过渡态中被进攻羰基与氨上N原子之间形成的夹角(OCN)与活化能有良好的线性关系.  相似文献   

7.
The geometries and bond dissociation energies of the main group complexes X3B-NX3, X3B-PX3, X3Al-NX3, and X3Al-PX3 (X = H, Me, Cl) and the transition metal complexes (CO)5M-NX3 and (CO)5M-PX3 (M = Cr, Mo, W) have been calculated using gradient-corrected density functional theory at the BP86/TZ2P level. The nature of the donor-acceptor bonds was investigated with an energy decomposition analysis. It is found that the bond dissociation energy is not a good measure for the intrinsic strength of Lewis acidity and basicity because the preparation energies of the fragments may significantly change the trend of the bond strength. The interaction energies between the frozen fragments of the borane complexes are in most cases larger than the interaction energies of the alane complexes. The bond dissociation energy of the alane complexes is sometimes higher than that of the borane analogues because the energy for distorting the planar equilibrium geometry of BX3 to the pyramidal from in the complexes is higher than for AlX3. Inspection of the three energy terms, DeltaE(Pauli), DeltaE(orb), and DeltaE(elstat), shows that all three of them must be considered to understand the trends of the Lewis acid and base strength. The orbital term of the donor-acceptor bonds with the Lewis bases NCl3 and PCl3 have a higher pi character than the bonds of EH3 and EMe3, but NCl3 and PCl3 are weaker Lewis bases because the lone-pair orbital at the donor atoms N and P has a high percent s character. The calculated DeltaE(int) values suggest that the trends of the intrinsic Lewis bases' strengths in the main-group complexes with BX3 and AlX3 are NMe3 > NH3 > NCl3 and PMe3 > PH3 > PCl3. The transition metal complexes exhibit a somewhat different order with NH3 > NMe3 > NCl3 and PMe3 > PH3 > PCl3. The slightly weaker bonding of NMe3 than that of NH3 comes from stronger Pauli repulsion. The bond length does not always correlate with the bond dissociation energy, nor does it always correlate with the intrinsic interaction energy.  相似文献   

8.
The dissociative adsorption of N2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.  相似文献   

9.
An eight-dimensional time-dependent quantum dynamics wave packet approach is performed for the study of the H2+C2H-->H+C2H2 reaction system on a new modified potential energy surface (PES) [L.-P. Ju et al., Chem. Phys. Lett. 409, 249 (2005)]. This new potential energy surface is obtained by modifying Wang and Bowman's old PES [J. Chem. Phys. 101, 8646 (1994)] based on the new ab initio calculation. This new modified PES has a much lower transition state barrier height at 2.29 kcal/mol than Wang and Bowman's old PES at 4.3 kcal/mol. This study shows that the reactivity for this diatom-triatom reaction system is enhanced by vibrational excitations of H2, whereas the vibrational excitations of C2H only have a small effect on the reactivity. Furthermore, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. The comparison of the rate constant between this calculation and experimental results agrees with each other very well. This comparison indicates that the new modified PES corrects the large barrier height problem in Wang and Bowman's old PES.  相似文献   

10.
A catalyst surface with an active metal site, a shape-selective reaction space, and an NH(2) binding site for o-fluorobenzophenone was designed and prepared by the molecular imprinting of a supported metal complex on a SiO(2) surface. A ligand of a SiO(2)-supported Ru complex that has a similar shape to the product of o-fluorobenzophenone hydrogenation was used as a template. An NH(2) binding site for o-fluorobenzophenone was spatially arranged on the wall of a molecularly imprinted cavity with a similar shape to the template. The structures of the SiO(2)-supported and molecularly imprinted Ru catalysts were characterized in a step-by-step manner by means of solid-state magic angle spinning (MAS) NMR, XPS, UV/Vis, N(2) adsorption, XRF, and Ru K-edge EXAFS. The molecularly imprinted Ru catalyst exhibited excellent shape selectivity for the transfer hydrogenation of benzophenone derivatives. It was found that the NH(2) binding site on the wall of the molecularly imprinted cavity enhanced the adsorption of o-fluorobenzophenone, of which the reduction product was imprinted, whereas there was no positive effect in the case of o-methylbenzophenone, which cannot interact with the NH(2) binding site through hydrogen bonding.  相似文献   

11.
An eight-degree-of-freedom (8DOF) time-dependent wave-packet approach has been developed to study the H(2)+C(2)H-->H+C(2)H(2) reaction system. The 8DOF model is obtained by fixing one of the Jacobi torsion angle in the nine-degree-of-freedom AB+CDE reaction system. This study is an extension of the previous seven-degree-of-freedom (7DOF) computation [J. Chem. Phys. 119, 12057 (2003)] of this reaction system. This study shows that vibrational excitations of H(2) enhance the reaction probability, whereas the stretching vibrational excitations of C(2)H have only a small effect on the reactivity. Furthermore, the bending excitation of C(2)H, compared to the ground-state reaction probability, hinders the reactivity. A comparison of the rate constant between the 7DOF calculation and the present 8DOF results has been made. The theoretical and experimental results agree with each other very well when the present 8DOF results are adjusted to account for the lower transition state barrier heights found in recent ab initio calculations.  相似文献   

12.
Fang DC  Harding LB  Klippenstein SJ  Miller JA 《Faraday discussions》2001,(119):207-22; discussion 255-74
A combination of high-level quantum-chemical simulations and sophisticated transition state theory analyses is employed in a study of the temperature dependence of the N2H + OH-->HNNOH recombination reaction. The implications for the branching between N2H + OH and N2 + H2O in the NH2 + NO reaction are also explored. The transition state partition function for the N2H + OH recombination reaction is evaluated with a direct implementation of variable reaction coordinate (VRC) transition state theory (TST). The orientation dependent interaction energies are directly determined at the CAS + 1 + 2/cc-pvdz level. Corrections for basis set limitations are obtained via calculations along the cis and trans minimum energy paths employing an approximately aug-pvtz basis set. The calculated rate constant for the N2H + OH-->HNNOH recombination is found to decrease significantly with increasing temperature, in agreement with the predictions of our earlier theoretical study. Conventional transition state theory analyses, employing new coupled cluster estimates for the vibrational frequencies and energies at the saddlepoints along the NH2 + NO reaction pathway, are coupled with the VRC-TST analyses for the N2H + OH channels to provide estimates for the branching in the NH2 + NO reaction. Modest variations in the exothermicity of the reaction (1-2 kcal mol-1), and in a few of the saddlepoint energies (2-4 kcal mol-1), yield TST based predictions for the branching fraction that are in satisfactory agreement with related experimental results. The unmodified results are in reasonable agreement for higher temperatures, but predict too low a branching ratio near room temperature, as well as too steep an initial rise.  相似文献   

13.
Hydrazine passes through two transition states, TS1 (phi = 0 degrees ) and TS2 (phi = 180 degrees ), in the course of internal rotation around its N-N bond. The origin of the corresponding rotational barriers in hydrazine has been extensively studied by experimental and theoretical methods. Here, we used natural bond orbital (NBO) analysis and energy decomposition of rotational barrier energy (DeltaE(barrier)) to understand the origin of the torsional potential energy profile of this molecule. DeltaE(barrier) was dissected into structural (DeltaE(struc)), steric exchange (DeltaE(steric)), and hyperconjugative (DeltaE(deloc)) energy contributions. In both transition states, the major barrier-forming contribution is DeltaE(deloc). The TS2 barrier is lowered by pyramidalization of nitrogen atoms through lowering DeltaE(struc), not by N-N bond lengthening through lowering DeltaE(steric). Higher pyramidality of nitrogen atoms of TS2 than that of TS1 explains well why the N-N bond of TS2 is longer than that of TS1. Finally, the steric repulsion between nitrogen lone pairs does not determine the rotational barrier; nuclear-nuclear Coulombic repulsion between outer H/H atoms in TS1 plays an important role in increasing DeltaE(struc). Taken together, we explain the reason for the different TS1 and TS2 barriers. We show that NBO analysis is a useful tool for understanding structures and potential energy surfaces of compounds containing the N-N bond.  相似文献   

14.
利用密度泛函理论研究了Pt(111)面及Pt14团簇对肉桂醛(CAL)的吸附作用和不完全加氢的反应机理。分析吸附能结果表明,肉桂醛分子以C=O与C=C键协同吸附在Pt(111)面上的六角密积(Hcp)位最稳定,以C=C键吸附在Pt14团簇上最稳定,且在Pt14团簇上的吸附作用较Pt(111)面更强。由过渡态搜索并计算得到的反应能垒及反应热可知,肉桂醛在Pt(111)面和Pt14团簇上均较容易对C=O键加氢得到肉桂醇(COL)。其中,优先加氢O原子为最佳反应路径,即Pt无论是平板还是团簇对肉桂醛加氢均有较好的选择性。同时发现,肉桂醛分子在Pt(111)面的加氢反应能垒较Pt14团簇上更低,即Pt的催化活性及对肉桂醛加氢产物选择性与其结构密切相关,其中,Pt(111)面对生成肉桂醇更加有利。  相似文献   

15.
A full dimensional, nine-degree-of-freedom (9DOF), time-dependent quantum dynamics wave packet approach is presented for the study of the H2+C2H-->H+C2H2 reaction system. This is the first full dimensional quantum dynamics study for a diatom-triatom reaction system. The effects of the initial vibrational and rotational excitations of the reactants on the reactivity of this reaction are investigated. This study shows that vibrational excitations of H2 enhance the reactivity; whereas, the vibrational excitations of C2H only have a small effect on the reaction probability. In addition, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. Comparison of the ground state reaction probabilities of the 9DOF and 8DOF shows the reaction probability from the full dimensional calculation is larger, with more prominent resonance features.  相似文献   

16.
Organobismuth-catalyzed transfer hydrogenation has recently been disclosed as an example of low-valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi-catalyzed transfer hydrogenation of azoarenes using p-trifluoromethylphenol ( 4 ) and pinacolborane ( 5 ) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6-bis[N-(tert-butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4 , an equilibrium between 1 a and 1 a ⋅ [OAr]2 (Ar=p-CF3−C6H4) is observed, and its thermodynamic parameters are established through variable-temperature NMR studies. Additionally, pKa-gated reactivity is observed, validating the proton-coupled nature of the transformation. The ensuing 1 a ⋅ [OAr]2 is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5 . DFT calculations indicate a rate-limiting transition state in which the initial N−H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen-bonded adduct of azobenzene and 4 . These studies guided the discovery of a second-generation Bi catalyst, the rate-limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.  相似文献   

17.
High-level electronic structure calculations have been used to construct portions of the potential energy surfaces related to the reaction of diborane with ammonia and ammonia borane (B2H6 + NH3 and B2H6 + BH3NH3)to probe the molecular mechanism of H2 release. Geometries of stationary points were optimized at the MP2/aug-cc-pVTZ level. Total energies were computed at the coupled-cluster CCSD(T) theory level with the correlation-consistent basis sets. The results show a wide range of reaction pathways for H2 elimination. The initial interaction of B2H6 + NH3 leads to a weak preassociation complex, from which a B-H-B bridge bond is broken giving rise to a more stable H3BHBH2NH3 adduct. This intermediate, which is also formed from BH3NH3 + BH3, is connected with at least six transition states for H2 release with energies 18-93 kal/mol above the separated reactants. The lowest-lying transition state is a six-member cycle, in which BH3exerts a bifunctional catalytic effect accelerating H2 generation within a B-H-H-N framework. Diborane also induces a catalytic effect for H2 elimination from BH3NH3 via a three-step pathway with cyclic transition states. Following conformational changes, the rate-determining transition state for H2 release is approximately 27 kcal/mol above the B2H6 + BH3NH3 reactants, as compared with an energy barrier of approximately 37 kcal/mol for H2 release from BH3NH3. The behavior of two separated BH3 molecules is more complex and involves multiple reaction pathways. Channels from diborane or borane initially converge to a complex comprising the H3BHBH2NH3adduct plus BH3. The interaction of free BH3 with the BH3 moiety of BH3NH3 via a six-member transition state with diborane type of bonding leads to a lower-energy transition state. The corresponding energy barrier is approximately 8 kcal/mol, relative to the reference point H3BHBH2NH3 adduct + BH3. These transition states are 27-36 kcal/mol above BH3NH3 + B2H6, but 1-9 kcal/mol below the separated reactants BH3NH3 + 2 BH3. Upon chemical activation of B2H6 by forming 2 BH3, there should be sufficient internal energy to undergo spontaneous H2 release. Proceeding in the opposite direction, the H2 regeneration of the products of the B2H6 + BH3NH3reaction should be a feasible process under mild thermal conditions.  相似文献   

18.
This work introduces a calibrated B3LYP/6-31G(d) study on the electronic structure of singlet and triplet neutral species of 1,2-substituted icosahedral 1,2-R(2)-1,2-C(2)B(10)H(10) and octahedral 1,2-R(2)-1,2-C(2)B(4)H(4) molecules with R = {H, OH, SH, NH(2), PH(2), CH(3), SiH(3)} and their respective dianions formed by proton removal on each R group. A variety of small adiabatic singlet-triplet gaps DeltaE(ST) are obtained from these systems ranging from 2.93 eV (R = NH(2)) 相似文献   

19.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H2+NH2-->H+NH3 reaction using a seven dimensional model on an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values and nonreactive NH2 group keeps C2v symmetry and the rotation-vibration coupling in NH2 is neglected. The total reaction probabilities are calculated when the two reactants are initially at their ground states, when the NH2 bending mode is excited, and when H2 is on its first vibrational excited state, with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants and equilibrium constants are calculated for the temperature range of 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the reaction is dominated by ground-state reactivity and the main contribution to the thermal rate constants is thought to come from this state, (b) the excitation energy of H2 was used to enhance reactivity while the excitation of the NH2 bending mode hampers the reaction, (c) the calculated thermal rate constants are very close to the experimental data and transition state theory results at high and middle temperature, while they are ten times higher than that of transition state theory at low temperature (T=200 K), and (d) the equilibrium constants results indicate that the approximations applied may have different roles in the forward and reverse reactions.  相似文献   

20.
Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, Hsub, may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, Had, depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of Hsub, especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号