首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Reactions of oxygen atoms with ethylene, propene, and 2-butene were studied at room temperature under discharge flow conditions by resonance fluorescence spectroscopy of O and H atoms at pressures of 0.08 to 12 torr. The measured total rate constants of these reactions are K = (7.8 ± 0.6)·10?13cm3s?1,K = (4.3 ± 0.4) ± 10?12 cm3 s?1, K = (1.4 ± 0.4) · 10?11 cm3 s?1. The branching ratios of H atom elimination channels were measured for reactions of O atoms with ethylene and propene. No H-atom elimination was found for the reaction of O-atoms with 2-butene. A redistribution of reaction O + C2 channels with pressure was found. A mechanism of the O + C2 reaction was proposed and the possibility of its application to other olefins is discussed. On the basis of mechanism the pressure dependence of the total rate constant for reaction O + C2 was predicted and experimentally confirmed in the pressure range 0.08–1.46 torr.  相似文献   

2.
Kinetic solvent isotope effects (KSIE) were measured for the hydrolyses of acetals of benzaldehydes in aqueous solutions covering the pH (pD) range of 1–6. For p-methoxybenzaldehyde diethyl acetal, k/k = 1.8–3.1, depending on the procedure used to calculate the KSIE and on the pH (pD) range used as the basis for k(k). It is shown that this variation is an experimental artifact, and is a characteristic of KSIE measurements in general. It is recommended that k be calculated from a least-squares fit of data to the equation kobs = k[L+], and that the KSIE be reported as k/k. The limitation remains, however, that the KSIE measured for a variety of substances over quite different pH (pD) ranges may not be comparable to more than ?20%. The source of these observations is discussed in terms of small changes in the activity coefficient ratios (a specific salt effect), including the solvent isotope effect on the activity coefficient ratio [eq. (3)].  相似文献   

3.
The extinction coefficients and the decay kinetics of I and (SCN) have been characterized over the 15–90°C-temperature range. The extinction coefficients of I at 385 and 725 nm were determined to be 10,000 and 2560M?1 cm?1, respectively, based on the extinction coefficient of (SCN) at 475 nm being equal to 7600M?1 cm?1. At these three wavelengths, all extinction coefficients were constant over the temperature range studied. The rate of decay of both I and (SCN) was found to be a function of I? and SCN? concentration, respectively, as well as temperature.  相似文献   

4.
The kinetics of the oxidation of formate, oxalate, and malonate by |NiIII(L1)|2+ (where HL1 = 15-amino-3-methyl-4,7,10,13-tetraazapentadec-3-en-2-one oxime) were carried out over the regions pH 3.0–5.75, 2.80–5.50, and 2.50–7.58, respectively, at constant ionic strength and temperature 40°C. All the reactions are overall second-order with first-order on both the oxidant and reductant. A general rate law is given as - d/dt|NiIII(L1)2+| = kobs|NiIII(L1)2+| = (kd + nks |R|)|NiIII(L1)2+|, where kd is the auto-decomposition rate constant of the complex, ks is the electron transfer rate constant, n is the stoichiometric factor, and R is either formate, oxalate, or malonate. The reactivity of all the reacting species of the reductants in solution were evaluated choosing suitable pH regions. The reactivity orders are: kHCOOH > k; k > k > k, and k > k < k for the oxidation of formate, oxalate, and malonate, respectively, and these trends were explained considering the effect of hydrogen bonded adduct formation and thermodynamic potential. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 225–230, 1997.  相似文献   

5.
Hexafluoroacetone (HFA) and O2 were photolyzed at 147.0 nm to investigate their use in chemical actinometry. The products, CO for the former and O3 in the latter case, were monitored. For accurate comparison, both of these substances were irradiated by a single light source with two identical reaction cells at 180° to each other. The light intensities I were measured under the same integrated as well as instantaneous photon flux based on ? and ?CO (quantum yield) as 2 and 1, respectively. Optimum conditions for maximum product yield were 5.0 torr HFA pressure and an O2 flow rate of 200 ml/min at 1 atm pressure for a 20-minute photolysis period. For light intensity variations between 1.09 × 1014 and 2.10 × 1015 photons absorbed/sec, the ratio I/IHFA was found to be unity. Calibration with the commonly used N2O actinometer for a ? value of 1.41 showed that I/IHFA and I/I are unity. Both HFA and O2 are suitable chemical actinometers at 147.0 nm with ?CO and ? of 1 and 2, respectively. The light intensity determination in the first case involves the measurement of only one product which is noncondensible at 77°K, whereas wet analysis for O3, the only product, in the second actinometer is necessary. Both of these determinations are quite simple and are preferable over product analysis in N2O actiometry, wherein N2 separation from other noncondensibles at 77°K is required.  相似文献   

6.
The kinetic isotope effects in the reaction of methane (CH4) with Cl atoms are studied in a relative rate experiment at 298 ± 2 K and 1013 ± 10 mbar. The reaction rates of 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl radicals are measured relative to 12CH4 in a smog chamber using long path FTIR detection. The experimental data are analyzed with a nonlinear least squares spectral fitting method using measured high‐resolution spectra as well as cross sections from the HITRAN database. The relative reaction rates of 12CH4, 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl are determined as k/k = 1.06 ± 0.01, k/k = 1.47 ± 0.03, k/k = 2.45 ± 0.05, k/k = 4.7 ± 0.1, k/k = 14.7 ± 0.3. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 110–118, 2005  相似文献   

7.
Arrhenius parameters have been determined for the hydrogen-abstraction reactions: R + SiHCl3 + RH + SiCl3
R Temp (°K) E(kcal/mole) Log A(mole?1 cc sec?1) Log k(400°K) (mole?1 cc sec?1)
CF3 323–461 5.98 ± 0.06 11.77 ± 0.03 8.50
CH3 333–443 4.30 ± 0.08 10.83 ± 0.04 4.48
C2H5 314–413 5.32 ± 0.07 11.54 ± 0.04 8.63
The trend in activation energies E < E < E is interpreted as indicating a polar effect in the reaction of CF3 with SiHCl3 and the similar reactivities of all three radicals appear to be due to the high exothermicity of the reactions. The A Factors for the reactions are normal for hydrogen abstraction reactions of free radicals. The previous results of Kerr, Slater, and Young for CH3 abstracting an H atom from SiHCl3 have been amended.  相似文献   

8.
Terpenes and terpene alcohols are prevalent compounds found in a wide variety of consumer products including soaps, flavorings, perfumes, and air fresheners used in the indoor environment. Knowing the reaction rate of these chemicals with the nitrate radical is an important factor in determining their fate indoors. In this study, the bimolecular rate constants of k (16.6 ± 4.2) × 10?12, k (12.1 ± 3) × 10?12, and k (2.3 ± 0.6) × 10?14 cm3 molecule?1 s?1 were measured using the relative rate technique for the reaction of the nitrate radical (NO3?) with 2,6‐dimethyl‐2,6‐octadien‐8‐ol (geraniol), 3,7‐dimethyl‐6‐octen‐1‐ol (citronellol), and 2,6‐dimethyl‐7‐octen‐2‐ol (dihydromyrcenol) at (297 ± 3) K and 1 atmosphere total pressure. Using the geraniol, citronellol, or dihydromyrcenol + NO3? rate constants reported here, pseudo‐first‐order rate lifetimes (k′) of 1.5, 1.1, and 0.002 h?1 were determined, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 669–675, 2010  相似文献   

9.
The recent experiments on the chloride-assisted dealkylation of alkylcobalamins by a variety of oxidants (IrCl, AuCl, Fe(H2O)5Cl2+, and PtCl), which are scattered in several previous publications, and their general kinetic characteristics are summarized. The kinetic studies are also extended to include the dealkylations of (methylaquo)?3,5,6-trimethylbenzimidazolylcobamide and protonated base-off ethylcobalamin by IrCl (1.0M Cl?) and by Fe(III) ions at 0.1M Cl?, and the demethylation of (methylaquo)?3,5,6-trimethylbenzimidazolylcobamide by AuCl (1.0M Cl?). This extension is in an effort to substantiate the general mechanism which has been previously proposed for these oxidative dealkylations. The general kinetic characteristics are described in terms of a preassociation of the reactants, followed by a rate-determining electron-transfer process to yield the R-B radical, which then undergoes further reactions to produce the products observed. The overall reactions are discussed within the framework of chlorine-bridging inner sphere electron-transfer reactions.  相似文献   

10.
Published experimental studies concerning the determination of rate constants for the reaction F + H2 → HF + H are reviewed critically and conclusions are presented as to the most accurate results available. Based on these results, the recommended Arrhenius expression for the temperature range 190–376 K is k = (1.1 ± 0.1) × 10−10 exp |-(450 ± 50)/T| cm3 molecule−1 s−1, and the recommended value for the rate constant at 298 K is k = (2.43 ± 0.15) × 10−11 cm3 molecule−1 s−1. The recommended Arrhenius expression for the reaction F + D2 → DF + D, for the same temperature range, based on the recommended expression for k and accurate results for the kinetic isotope effect k/k is k = (1.06 ± 0.12) × 10×10 exp |-(635 ± 55)/T|cm3 molecule−1 s−1, and the recommended value for 298 K is k = (1.25 ± 0.10) × 10−11 cm3 molecule−1 s−1. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 67–71, 1997.  相似文献   

11.
The mechanism of the photolysis of formaldehyde was studied in experiments at 3130 Å and in the pressure range of 1–12 torr at 25°C. The experiments were designed to establish the quantum yields of the primary decomposition steps (1) and (2), CH2O + hν → H + HCO (1): CH2O + hν → H2 + CO (2), through the effects of added isobutene, trimethylsilane, and nitric oxide on ΦCO and Φ. The ratio ΦCO/Φ was found to be 1.01 ± 0.09(2σ) and (Φ + ΦCO)/2 = 1.10 ± 0.08 over the range of pressures and a 12-fold change in incident light intensity. Isobutene and nitric oxide additions reduced Φ to about the same limiting value, 0.32 ± 0.03 and 0.34 ± 0.04, respectively, but these added gases differed in their effects on ΦCO. With isobutene addition ΦCO/Φ reached a limiting value of 2.3; with NO addition ΦCO exceeded unity. The addition of small amounts of Me3SiH reduced Φ to 1.02 ± 0.08 and lowered ΦCO to 0.7. These findings were rationalized in terms of a mechanism in which the “nonscavengeable,” molecular hydrogen is formed in reaction (2) with ?2 = 0.32 ± 0.03, while the “free radical” hydrogen is formed in reaction (1) with ?1 = 0.68 ± 0.03. In the pure formaldehyde system these reactions are followed by (3)–(5): H + CH2O → H2 + HCO (3); 2HCO → CH2O + CO (4); 2HCO → H2 + 2CO (5). The data suggest k4/k5 ? 5.8. Isobutene reduced Φ by the reaction H + iso-C4H8 → C4H9 (20), and the results give k20/k3 ? 43 ± 4, in good agreement with the ratio of the reported values of the individual constants k3 and k20.  相似文献   

12.
The absolute rate constants have been measured for several gas-phase chlorine atom-molecule reactions at 25°C by resonance fluorescence. These reactions and their corresponding rate constants in units of cm3 mole?1 sec?1 are: The effects of varying the substrate pressure, total pressure, light intensity and chlorine-atom source on the value of the bimolecular rate constants have been investigated for all these reactions. Conditions under which no competing side reaction occurs were established and the reported rate constants were measured under these conditions. For reactions (2), (5), (6), (7), and 8, there is a discrepancy of a factor of two between the rate constants measured in this work and values in the literature; it is suggested that this is due to an error in the previously measured value of k/k upon which the relative measurements in the literature ultimately depend.  相似文献   

13.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

14.
The kinetics of the reaction of CH3O with NO and the branching ratio for HCHO product formation, obtained as ΓHCHO = (Rate of HCHO formation) / (Rate of CH3O decay), have been studied using a discharge flow reactor. Laser induced fluorescence has been used to monitor the decay of the CH3O radical and the build-up of the HCHO product. Overall rate constants and product branching ratios were measured at room temperature over the pressure range of 0.72–8.5 torr He. Three reaction mechanisms were considered which differed in the routes of HCHO formation: (i) direct disproportionation; (ii) via an energized collision complex; or (iii) both reaction routes. It has been shown that data on the pressure dependence of the overall rate constant are not sufficient to distinguish between these mechanisms. In addition, an accurate value of Γ is required. Analysis of the available experimental data provided 0.0 and about 0.1 as the lower and upper limit for Γ, respectively. Since the rate constants derived for CH3ONO formation were not sensitive to the value assumed for Γ, k = (1.69 ± 0.69) × 10?29 cm6 molecule?2 s?1 and k = (2.45 ± 0.31) × 10?11 cm3 molecule?1 s?1 could be derived. The rate constant obtained for formaldehyde formation when extrapolated to zero pressure is k = (3.15 ± 0.92) × 10?12 cm3 molecule?1 s?1. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Recent experimental data concerning the rate constants and their free energy of the outer sphere electron-transfer reactions, as catalyzed by noncoordinated pyridine derivatives in aqueous solution, are examined for possible correlation. For the electron transfer reactions between V or Eu and the bipyridyl derivatives, such as N,N'-dimethyl-4,4′-bipyridyl (paraquat) or diquat, the data are correlated quite well by the Marcus equation. The electron exchange rate constant, 5 × 107M?1·s?1, for an organic radical ion and its parent molecule obtained from semiquinones or their related compounds can be applied to these pyridine derivatives. However, in some cases such as electron transfer from paraquat or diquat cation radical to Co(en), positive departures from the Marcus model are observed. These positive departures are interpreted in terms of interaction between the molecular orbitals of electron donors and electron acceptors in the transition state.  相似文献   

16.
Ultraviolet absorption spectra have been characterized for the acetyl-h3 and acetyl-d3 radicals, which were generated by the flash photolysis of the corresponding acetones. The spectra are broad and intense, with values of the extinction coefficient at the respective maxima estimated as: ?CH3CO(215) = (1.0 ± 0.1) × 104 L/mol·cm and ?CD3CO(207.5) = (1.0 ± 0.05) × 104 L/mol·cm. Rate constants for the reactions of mutual interaction were estimated as: k = 3.5 × 1010 L/mol·s and k = 3.4 × 1010 L/mol·s. Rate constants for the reactions of cross interaction were estimated as: k = 8.6 × 1010 L/mol·s and k = 5.2 × 1010 L/mol·s. The related values of the cross interaction ratios k/(kk)1/2 = 2.6 and k/(kk)1/2 = 1.6 do not differ significantly from the statistical value of 2. The participation of the radical displacement reactions was estimated in terms of the fractions k/k = 0.38 and k/k = 0.47. Corroborative spectra were obtained from the flash photolysis of methyl ethyl ketone and biacetyl, and the relative rates of the competing primary processes were estimated from the relative peak heights of the acetyl and methyl radicals in each system.  相似文献   

17.
The kinetics of oxidation of benzyl alcohol and substituted benzyl alcohols by sodium N-chloro-p-toluenesulfonamide (chloramine-T, CAT) in HClO4 (0.1–1 mol/dm3) containing Cl? ions, over the temperature range of 30–50°C have been studied. The reaction is of first order each with respect to alcohol and oxidant. The fractional order dependence of the rate on the concentrations of H+ and Cl? suggests a complex formation between RNCl? and HCl. In higher acidic chloride solution the rate of reaction is proportional to the concentrations of both H+ and Cl7hyphen;. The observed solvent isotope effect (k/k) is 1.43 at 30°C. The reaction constant (p = ?1.66) and thermodynamic parameters are evaluated. Rate expressions and probable mechanisms for the observed kinetics have been suggested.  相似文献   

18.
Henry's law constants of CHF2Cl in water at temperature T in K, KH(T) in M atm?1, were determined to be ln(KH(T))=?(11.1±1.5)+((2290±500)/T) at 313–363 K by means of a phase ratio variation headspace method. The temperature‐dependent rate constants for aqueous reactions of CHF2Cl with OH?, k(T) in M?1 s?1, were also determined to be 3.7×1013exp(?(11, 200/T)) at 313–353 K, by considering the gas–water equilibrium, the aqueous reaction at room temperature, and liquid‐phase diffusion control. The liquid‐phase diffusion control was approximated with a one‐dimensional diffusion first‐order irreversible chemical reaction model. The k(T) value we determined is 10 times (at 353 K) or 3 times (at 313 K) as large as the value reported (R. C. Downing, Fluorocarbon Refrigerants Handbook, Prentice Hall: Englewood Cliffs, NJ, 1988). This upward revision of k(T) indicates that the removal efficiency of CHF2Cl directly through the hydrolysis (CHF2Cl + OH?) is higher than previously expected at temperatures, such as 353 K, relevant to wet flue gas cleaning systems for ozone‐destruction substance‐destruction facilities. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 639–647, 2011  相似文献   

19.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The kinetics of the acqueous-phase reactions of the free radicals ·OH, ·Cl, and SO· with the halogenated acetates, CH2FCOO?, CHF2COO?, CF3COO?, and with CH2ClCOO?, CHCl2COO?, CCl3COO? were investigated. Generally, the reactivity decreases with increasing halogen substitution and is in the order k(·OH) > k(SO·) > k(·Cl), but there is no general relation between the effect on reactivity of chlorine and fluorine substitution. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号