首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
采用XRD,SEM等材料分析方法及恒电流充放电、线性极化等电化学测试技术研究了低钴LaNi4.5Co0.4-xAl0.1+x(x=0.00~0.30)储氢合金的电极性能。XRD分析表明:合金均为单一CaCu5型六方结构的LaNi5相结构,随着合金中Al含量的增加,其晶胞参数a和c及晶胞体积都显著增加。301 K时模拟电池测试结果表明:x=0.00时,合金电极具有最佳自放电性能;x=0.15时,合金电极的循环稳定性能最好,其高倍率放电性能达到70.21%(放电电流密度为1800 mA.g-1)。当0.10≤x≤0.15时,Al替代Co能改善AB5型低钴储氢合金的循环稳定性能和高倍率放电性能。  相似文献   

2.
详细研究了无Co过化学计量比合金LaNi(4.75-x)FexMn1.25及LaNi4.75Mn(1.25-x)Fex(x=0.2~0.7)在1000℃168 h固溶及均匀化退火条件下合金的相结构及电化学性能.X射线衍射(XRD)及能谱分析(EDS)表明,La(NiMnFe)6.0退火合金由过化学计量比CaCu5型结构吸氢主相和含Ni-Fe-Mn三元组分少量的第二相组成.当Fe元素替代合金中的Ni时,合金晶胞体积增大,主相的化学计量比及Mn的固溶度有所增加.而当Fe元素替代合金中的Mn时,合金的晶胞体积减小,主相的化学计量比减小.电化学测试表明,Fe替代合金中的Ni时合金电极的放电容量较低但循环稳定性好;Fe替代Mn时合金电极放电容量较高但循环稳定性差.分析原因可能是由于两系列合金中Mn原子哑铃对数量上的差别所引起的,并基于B端双原子哑铃占位模型分析了合金B端组成和结构对合金电极性能的影响,提出了改善合金综合电化学性能的方法.  相似文献   

3.
低钴AB5型稀土系贮氢电极合金的研究   总被引:5,自引:0,他引:5  
为了进一步降低AB5型混合稀土系贮氢合金的成本,采用Cr,Si,Cu替代Co和调节化学计量比的方法制备低钴AB5型贮氢合金。结果表明:3种取代元素在寿命方面的效果依次为Si>Cr>Cu,在放电容量和活化性能方面依次是Cu>Cr>Si。Cr,Cu,Si只有少量的替代才可能发挥其有利影响;通过非化学计量比的调节,低钴混合稀土系贮氢电极合金的放电容量、活化性能及倍率放电能力都能较好地达到实用要求,但是循环寿命有待提高。  相似文献   

4.
用冷坩埚磁悬浮熔炼方法制备La0.5Mg0.5(Ni1-xCox)2.28(x=0.0~0.2)贮氢电极合金,采用SEM,EDS,XRD,P-C-T测试及三电极电化学性能测试研究合金的相成分、相结构、P-C-T曲线和电化学性能.EDS结合XRD分析表明,La0.5Mg0.5Ni2.28及La0.5Mg0.5(Ni0.85Co0.15)2.28合金主相均为MgSnCu4型的LaMgNi4相,还包括LaNi5和(La,Mg)Ni3相.P-C-T曲线显示,合金均有双放氢平台,合金的贮氢量由Co替代量x=0.0时的1.24%增大至极大值x=0.15时的1.27%.电化学性能测试表明,随Co含量增加,最大放电容量从329.0mAh·g-1(x=0.0)增大到337.5 mAh·g-1(x=0.15),合金活化性能及高倍率放电性能明显改善;循环稳定性无明显变化.  相似文献   

5.
采用熔铸和快凝技术制备过计量比AB5.6型储氢合金La0.8Ce0.2Ni4.65-xMn0.9Ti0.05(V0.3Fe0.4Al0.3)x(x=0~1.0),研究了(V0.3Fe0.4Al0.3)对铸态和快凝合金相结构和电化学性能的影响。XRD和SEM结果表明:铸态合金组织由基体Ca Cu5型相和少量第二相组成;当x0.7时,快凝合金组织为计量比是AB5.5的Ca Cu5型单相组织,当x≥0.7后,合金中形成少量富La的La-Ni相;铸态与快凝合金的晶胞参数a,c及晶胞体积V均随x的增加而增加,快凝合金晶胞参数和晶胞体积明显大于铸态组织。室温(298 K)下铸态和快凝合金的放氢平台压随x的增加均依次降低,其中快凝合金放氢平台压降低幅度大。电化学测试结果表明:随x的增加,铸态和快凝合金电极的活化性能和最大放电容量均呈下降趋势,但电极循环稳定性逐渐提高;x=0.3~0.5时,快凝合金电极的最大放电容量为306~316 m Ah·g-1,经100次循环后的容量保持率S100达90%左右,快凝合金电极的循环寿命明显优于铸态合金。  相似文献   

6.
用冷坩埚磁悬浮熔炼方法制备La1-xMgxNi2.28(x=0.0~0.6)贮氢电极合金,采用FESEM,EDS,XRD,p-c-t测试及三电极电化学性能测试研究合金的相成分、相结构、p-c-t曲线和电化学性能.EDS结合XRD分析表明,LaNi2.28合金主相为四方结构的La7Ni16相;Mg替代量x为0.3时合金主相为MgSnCu4型的LaMgNi4相,还含有LaNi5和(La,Mg)Ni3相.p-c-t曲线显示,当Mg替代量x不超过0.2时,合金无放氢平台;x为0.3时合金出现明显平台;x为0.5时合金出现两个放氢平台,相应贮氢量达到1.24%(质量分数).电化学性能测试表明,最大放电容量从100.2 mAh·g-1(x=0.0)增大到329.0 mAh·g-1(x=0.5),然后减小到207.8 mAh·g-1(x=0.6);活化性能改善;高倍率放电性能先降低后提高;循环稳定性S100从84.8%(x=0.0)提高到91.5%(x=0.2),然后降低到63.3%(x=0.5).  相似文献   

7.
用铸造及快淬工艺制备了低钴AB5型MmNi3.8Co0.4Mn0.6Al0.2Bx (x=0, 0.1, 0.2, 0.3, 0.4)贮氢合金, 分析测试了铸态及快淬态合金的微观结构与电化学性能, 研究了硼及快淬工艺对合金微观结构及电化学性能的影响. 结果表明, 铸态合金具有双相组织, 主相为CaCu5型相, 还有少量CeCo4B第二相, 第二相的相丰度随硼含量x的增加而增大. 对合金进行了不同淬速的快淬处理, 随淬速的增加, 合金中第二相的量减少. 快淬使合金的晶格参数略有增大. 快淬工艺对合金的电化学性能产生显著影响, 随淬速的增加, 合金的容量下降, 循环稳定性显著提高. 快淬使合金的活化性能降低, 但随着硼含量的增加, 活化性能、高倍率放电能力及放电电压特性均得到不同程度的改善.  相似文献   

8.
采用X射线衍射法研究了LaNi5 .1 5 ,La(NiSn) 5 .1 4 ,La(NiSnCo) 5 .1 2 ,La(NiSnMn) 5 .1 2 ,La(NiSnCoMnAl) 5 .1 0 5种AB5 型非化学计量贮氢合金的结构。发现主物相中并未产生第二物相 ,AB5 型贮氢合金中B原子数发生正偏移时 ,晶胞体积减小 ,当B侧含有取代元素时 ,这种变化更加明显。对于非化学计量贮氢合金而言 ,少量Sn取代Ni后 ,晶胞体积大大提高。Mn ,Co和Al的加入也会影响晶胞常数。Sn ,Co ,Mn ,Al均会降低贮氢合金放氢平台压力。  相似文献   

9.
储氢合金La0.7-xCexMg0.3Ni2.4Co0.6(x=0~0.4)电化学性能研究   总被引:1,自引:0,他引:1  
研究了以Ce部分取代La对AB3型储氢合金La0.7-xCexMg0.3Ni2.4Co0.6(x=0~0.4)结构和电化学性能的影响.实验表明,该系列合金主要包含LaNi3相和LaNi5相.随着Ce含量的增加,合金电极的最大放电容量逐渐降低,但循环稳定性得到了明显改善.  相似文献   

10.
研究了用B掺杂替代A1对AB5型稀土贮氢合金相结构和电化学性能的影响.对M1Ni3.55Co0.75Mn0.4Al0.3-xBx(x=0,0.1,0.2,0.3)合金的研究结果表明:掺B后贮氢合金出现了CeCo4B第二相,导致贮氢合金的电化学容量下降;随B含量的增加和A1含量的减少,氢的扩散系数明显上升,合金的极化电阻减小,合金的高倍率放电性能和低温性能得到明显改善.  相似文献   

11.
The effect of Cu content on structure, hydrogen storage, and electrochemical properties of LaNi4.1-x Co0.6Mn0.3Cu x alloys has been investigated. For sample, A, B, C, and D are used to represent alloys (x?=?0, 0.15, 0.3, and 0.45), respectively. The results indicate that the four alloys are all single-phase alloy with LaNi5 phase of CaCu5 hexagonal structure, the hydrogen storage capacities of the alloy are about 1.49 wt% (A), 1.48 wt% (B), 1.43 wt% (C), and 1.25 wt% (D) at 303 K. With the increase of Cu content (x) from A to D, hydrogen desorption plateau pressure and pressure hysteresis decrease. Alloy electrode A shows better activation property and higher capacity (334.44 mAh/g). The addition of Cu improves the cyclic stability of the alloy electrodes when x?=?0?~?0.45. However, their self-discharge properties and high-rate dischargeability (HRD) decrease with the increase of x. Further, electrochemical kinetics and electrochemical impedance spectroscopy (EIS) analysis show that the reaction of alloy electrode is controlled by charge transfer step, and the adding of Cu benefits the electrode properties in alkaline solution.  相似文献   

12.
Electrochemical behavior of metal hydrides   总被引:1,自引:0,他引:1  
Metal hydride electrodes are of particular interest owing to their potential and practical application in batteries. A large number of hydrogen storage materials has been characterized so far. This paper deals with the effect of the chemical nature and stoichiometry of specific alloy families (AB5, A2B, AB/AB2 and AB2) on the hydride stability, hydrogen storage capacity and kinetics of hydrogen sorption-desorption in the solid phase/gas and solid phase/electrolyte solution systems. Special attention has been paid towards the electrochemical properties of metal hydrides in terms of their performance in Ni-MH rechargeable alkaline cells. Electronic Publication  相似文献   

13.
A series of experiments were performed to investigate the effect of TiMn1.5 alloying on the structure, hydrogen storage properties and electrochemical properties of LaNi3.8Co1.1Mn0.1 hydrogen storage alloys at 303 K. For simple, A, B, and C are used to represent alloys (x = 0 wt %, x = 4 wt % and x = 8 wt %) respectively. The results of XRD and SEM show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys have LaNi5 phase and (NiCo)3Ti phase. Based on the results of PCT curves, the hydrogen storage capacities of LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys are about 1.28 wt % (A), 1.16 wt % (B) and 1.01 wt % (C) at 303 K. And the released pressure platform and the pressure hysteresis decrease with the increase of TiMn1.5 content. Meanwhile the activation curves show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrodes can be activated in three times and the maximum discharge capacity is 343.74 mA h/g at 303 K. In addition, with the increase of TiMn1.5 content, the cyclic stability of the hydrogen storage alloy electrodes decreases obviously and the capacity retention decreases from 76.70% to 70.00% when TiMn1.5 content increases from A to C. It also can be seen that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrode C and B have the best self-discharge ability and the best high-rate discharge ability from self-discharge curves and high-rate discharge curves.  相似文献   

14.
采用磁悬浮感应熔炼方法制备了V2.1TiNi0.4Zr0.06Cu0.03M0.10(M=Cr, Co, Fe, Nb, Ta)储氢电极合金, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电子衍射能谱(EDS)分析和电化学测试等手段系统研究了添加元素M对合金微结构与电化学性能的影响. 结果表明, 所有合金均由BCC结构的V基固溶体主相和C14型Laves第二相组成, 且第二相沿主相晶界形成三维网状分布; Cr、Nb 和Ta元素主要分布在合金主相中, 而Co和Fe元素主要分布在第二相中. 电化学性能测试表明, 在V2.1TiNi0.4Zr0.06Cu0.03合金中掺加Cr、Co、Fe、Nb或Ta元素后, 虽然会降低最大放电容量, 但能有效抑制合金中V和Ti的腐蚀溶出, 提高电极充放电循环稳定性; 同时还能明显改善合金的高倍率放电性能. 相比之下, V2.1TiNi0.4Zr0.06Cu0.03Cr0.10合金具有最佳的综合电化学性能.  相似文献   

15.
V2.1TiNi0.4Zr0.06Cux(x=0-0.12)储氢合金的微结构及电化学性能   总被引:1,自引:1,他引:0  
采用磁悬浮感应熔炼方法制备了V2.1TiNi0.4Zr0.06Cux (x=0-0.12)储氢合金, 经XRD、SEM、EDS和电化学测试等系统研究了Cu添加量对合金微结构及电化学性能的影响. 结果表明, 所有合金均由V基固溶体主相和C14型Laves第二相组成, 且第二相沿主相晶界形成三维网状分布; 合金主相和第二相的晶胞体积均随着Cu含量x的增加而增大. 电化学性能测试表明, 添加适量(x=0.03-0.06)的Cu可以提高合金的最大放电容量, 并对活化性能基本没有影响; 而过高的Cu添加量(x≥0.09)会降低合金的放电容量. 此外, 添加Cu可使合金的高倍率放电性能得到明显改善, 充放电循环稳定性有所提高. 在所研究的合金样品中, V2.1TiNi0.4Zr0.06Cu0.03合金具有最佳的综合性能.  相似文献   

16.
The initial and subsequent hydriding process and hydrogen storage characteristics of Mg-x wt.%LaNi5 (x = 10–60) sintered alloys were investigated in comparison with those of pure magnesium, Mg2Ni and LaMg12. LaNi5 addition significantly lowered the temperature at which the hydrogen absorption of magnesium was initiated during the initial hydriding process. The subsequent hydriding rate was also accelerated by the addition of LaNi5 up to 30%, beyond which the hydriding rate decreased steeply. Microstructural observations revealed that Mg-xwt.%LaNi5 sintered alloys (x ⩽ 25.6) consisted of primary magnesium, a eutectic mixture of Mg-Mg2Ni and LaMg12, while the alloys (25.6 ⩽ x ⩽ 44.7) consisted of primary Mg2Ni, LaMg12 and a eutectic mixture of Mg-Mg2Ni. The alloys with x ⩾ 44.7 consisted of Mg2Ni, LaMg12 and LaNi5. It was found that the initial and subsequent hydriding rates were closely related to the microstructure and the types of phases present in the alloys. For the initial hydriding process, the presence of LaNi5 together with the Mg2Ni phase in the alloy play a crucial role in the acceleration of the initial hydriding process. The subsequent hydriding rates are probably dependent on the amounts of Mg-Mg2Ni eutectic mixture present in the alloy, whose complicated structure may be effective for hydriding. The pressure-composition isotherms of Mg-xwt.%-LaNi 5 sintered alloys consisted of two plateaux. The pressures of the lower plateau were consistent with those of magnesium and LaMg12, while the pressures of the higher plateau were consistent with that of Mg2Ni. It may be concluded that Mg-30wt.%LaNi5 sintered alloy would be the most suitable material for hydrogen storage of the materials investigated in this study. That is, the initial and subsequent hydriding rates were faster and the hydrogen storage capacity of about 5 wt.% was larger than those of Mg2Ni.  相似文献   

17.
This is a study of the alloy structure, cycling life, and reaction kinetics of LaNi4.7–x Sn0.3Pt x (x=0 and 0.1) metal hydride electrodes, using X-ray diffraction, X-ray absorption spectroscopy, electrochemical charge/discharge cycling, and electrochemical impedance spectroscopy. It is seen that the presence of platinum in the alloy causes an increase of the cycle life and a decrease in the hydrogen equilibrium pressure, activation time, charge storage capacity, and the rate of capacity decay during multicycling. XANES results are consistent with a decrease in the Ni oxidation in the Pt-containing alloy after the electrode cycling, indicating a protection introduced by Pt against Ni oxidation. It was also found that the catalytic activity of charge/discharge is improved with Pt alloying, a factor exclusively related to an increase of the active area due to higher alloy pulverization.  相似文献   

18.
Al0.10Ti0.30V0.25Zr0.10Nb0.25 was prepared to evaluate the effect of 10% aluminum into the previously reported quaternary alloy, Ti0.325V0.275Zr0.125Nb0.275. The as-cast quinary alloy formed a single-phase body centered cubic solid solution and transformed into a body centered tetragonal after hydrogenation. The alloy had a storage capacity of 1.6 H/M (2.6 wt.%) with fast absorption kinetics at room temperature, reaching full capacity within the first 10 min. The major improvements of Al addition (10%) were related to the desorption and cycling properties of the material. The temperature for hydrogen release was significantly decreased by around 100 °C, and the quinary alloy showed superior cycling stability and higher reversible storage capacity than its quaternary counterpart, 94% and 85% of their respective initial capacity, after 20 hydrogenation cycles without phase decomposition.  相似文献   

19.
The Ml-Mg-Ni-based (Ml = La-rich mixed lanthanide) hydrogen storage alloy Ml0.88Mg0.12Ni3.0-Mn0.10Co0.55Al0.10 was prepared by inductive melting. The micro-structure was analyzed by XRD and SEM. The alloy consists mainly of CaCu5-type phase, Ce2Ni7-type phase and Pr5Co19-type phase. The electrochemical measurements show that the maximum discharge capacity is 386 mAh/g, 16.3% higher than that of the commercial AB5-type alloy (332 mAh/g). At discharge current density of 1 100 mA/g, high rate dischargeability is 62%, while that of the AB5-type alloy is only 45%. The discharge capacity decreases to 315 mAh/g after 300 charge/ discharge cycles, 81.5% of the maximum discharge capacity. __________ Translated from Journal of Xi’an Jiao Tong University, 2008, 42(3) (in Chinese)  相似文献   

20.
Intermetallic compounds La3–xMgxNi9 (x = 1.0, 1.1) were synthesized and their hydrogen sorption and electrochemical properties were studied. The maximum hydrogen storage capacities for La2MgNi9 and La1.9Mg1.1Ni9 were shown to be 1.6±0.1 and 1.5±0.1 wt.%, respectively, and the unit cell volume increased by 24% and 16%, respectively, upon the hydrogenation of the alloys. The maximum specific capacity of the electrodes with the La1.9Mg1.1Ni9 and La2MgNi9 alloys is 390 mA h g–1 at a discharge current density of 60 mA g–1, which is 24% higher as compared to the similar data for the LaNi5 alloy (315 mA h g–1). The electrodes demonstrate high specific capacity and performance at high current densities, as well as good cyclic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号