首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. Figure Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers Suquan Song and Aibo Wu contributed equally to this work.  相似文献   

2.
A rapid, specific, and sensitive method has been developed using molecularly imprinted polymers (MIPs) as solid-phase extraction sorbents for extraction of trace tetracycline antibiotics (TCs) in foodstuffs. MIPs were prepared by precipitation polymerization using tetracycline as the template. Under the optimal condition, the imprinting factors for MIPs were 4.1 (oxytetracycline), 7.0 (tetracycline), 7.4 (chlortetracycline), 7.7 (doxycycline), respectively. Furthermore, the performance of MIPs as solid-phase extraction sorbents was evaluated and high extraction efficiency of molecularly imprinted solid-phase extraction (MISPE) procedure was demonstrated. Compared with commercial sorbents, MISPE gave a better cleanup efficiency than C18 cartridge and a higher recovery than Oasis HLB cartridge. Finally, the method of liquid chromatography–tandem mass spectrometry coupled with molecular-imprinted solid-phase extraction was validated in real samples including lobster, duck, honey, and egg. The spiked recoveries of TCs ranged from 94.51% to 103.0%. The limits of detection were in the range of 0.1–0.3 μg kg−1. Chromatograms obtained by direct injection of the spiked egg extracts (5 × 10-3 mmol L−1) and purification with MISPE  相似文献   

3.
Molecularly imprinted polymers (MIPs) were prepared using bisphenol A (BPA) as a template by precipitation polymerization. The polymer that had the highest binding selectivity and ability was used as solid-phase extraction (SPE) sorbents for direct extraction of BPA from different biological and environmental samples (human serum, pig urine, tap water and shrimp). The extraction protocol was optimized and the optimum conditions were as follows: conditioning with 5 mL methanol–acetic acid (3:1), 5 mL methanol, 5 mL acetonitrile and 5 mL water, respectively, loading with 5 mL aqueous samples, washing with 1 mL acetonitrile, and eluting with 3 mL methanol. MIPs can selectively recognize, effectively trap and preconcentrate BPA over a concentration range of 2–20 μM. Recoveries ranged from 94.03 to 105.3 %, with a relative standard deviation lower than 7.9 %. Under the optimal condition, molecularly imprinted SPE recoveries of spiked human serum, pig urine, tap water and shrimp were 65.80, 82.32, 76.00 and 75.97 %, respectively, when aqueous samples were applied directly. Compared with C18 SPE, a better baseline, better high-performance liquid chromatography separation efficiency and higher recoveries were achieved after molecularly imprinted SPE.   相似文献   

4.
Organophosphorus insecticides are widely employed in agriculture, and residues of them can remain after harvesting or storage. Pesticide residue control is an important task for ensuring food safety. Common chromatographic methods used in the determination of pesticide residues in food require clean-up and concentration steps prior to quantitation. While solid-phase extraction has been widely employed for this purpose, there is a need to improve selectivity. Due to their inherent biomimetic recognition systems, molecularly imprinted polymers (MIP) allow selectivity to be enhanced while keeping the costs of analysis low. In this work, a MIP that was designed to enable the selective extraction of fenitrothion (FNT) from tomatoes was synthesized using a noncovalent imprinting approach. The polymer was prepared using methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as crosslinking monomer in dichloromethane (a porogenic solvent). The polymer was characterized by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and nitrogen sorption porosimetry. The pore structure and the surface area were evaluated using the BET adsorption method. To characterize the batch rebinding behavior of the MIP, the adsorption isotherm was measured, allowing the total number of binding sites, the average binding affinity and the heterogeneity index to be established. A voltammetric method of quantifying FNT during the molecularly imprinted solid-phase extraction (MISPE) studies was developed. The polymer was placed in extraction cartridges which were then used to clean up and concentrate FNT in tomato samples prior to high-performance liquid chromatographic quantitation. The material presented a medium extraction efficiency of 59% (for analyses performed with three different cartridges on three days and a fortification level of 5.0 μg g−1) and selectivity when used in the preparation of tomato samples, and presented the advantage that the polymer could be reused several times after regeneration. Figure    相似文献   

5.
Cholesterol-imprinted polymers were prepared in bulk polymerization by the methods of covalent and non-covalent imprinting. The former involved the use of a template-containing monomer, cholesteryl (4-vinyl)phenyl carbonate, while the latter used the complexes of template and functional monomer, methacrylic acid or 4-vinylpyridine prior to polymerization. Columns packed with these molecularly imprinted polymers (MIPs) were all able to separate cholesterol from other steroids. For different combinations of cholesterol and beta-estradiol concentrations in a total of 1 g/l, the peak retention times for both compounds were nearly constant. The adsorption capacity for cholesterol onto the MIPs was found to significantly depend on the use of functional monomers, but the selectivity factors were only slightly different from each other at 2.9 to 3.2 since the separation was all based on the specific binding of cholesterol to recognition sites formed on the imprinted polymers. The capacity factors for cholesterol were determined to be 3.5, 4.0 and 3.1, respectively, for covalently imprinted, 4-vinylpyridine-based, and methacrylic acid-based non-covalently imprinted polymers. However, the covalently imprinted polymer was found to have a higher adsorption capacity for cholesterol and about fivefold higher chromatographic efficiency for cholesterol separation, in comparison with non-covalently imprinted polymers. The use of covalent imprinting significantly reduced the peak broadening and tailing. This advantage along with constant retention suggests that the covalently imprinted polymer has potential for quantitative analysis.  相似文献   

6.
Molecularly imprinted polymers (MIPs) are synthetic polymers with a predetermined selectivity for a given analyte, or group of structurally related compounds, that make them ideal materials to be used in separation processes. In this sense, it is not surprising that the first applications of MIPs were as tailor-made chiral stationary phases in liquid chromatography. However, peak broadening and tailing, especially of the more retained enantiomers, were observed. Accordingly, this paper gives an overview of the attempts carried out during the recent years to improve the chromatographic performance of MIPs in liquid chromatography and capillary electrophoresis as well as the more recent applications. We conclude that MIPs are very promising materials to be used as selective stationary phases in chromatography although further developments are necessary in order to fully exploit their potential.  相似文献   

7.
A highly selective molecularly imprinted polymer (MIP) for the recognition of the pesticide carbaryl in water has been synthesized using halogenated bisphenol A compounds as one of the polymeric precursors and carbaryl as the template molecule. On the basis of the heavy-atom effect, both the brominated and the iodinated MIPs allowed analyte detection by room-temperature-phosphorescence measurements. In the presence of an oxygen scavenger (sodium sulphite) the halide, included in the polymeric structure, induced efficient room-temperature phosphorescence of the analyte (once it had been selectively retained by the MIP). The MIP cavity can be easily regenerated for subsequent sample injections with 2 mL methanol. The optosensing system developed has demonstrated high selectivity for carbaryl, even in the presence of other luminophores that could be unspecifically adsorbed onto the MIP surface. Under optimal experimental conditions, the detection limit for the target molecule was 4 μg/L (3-mL sample injection volume), and the linear range extended up to 1 mg/L of the analyte. Good reproducibility was achieved (a relative standard deviation of 3% was obtained for ten replicates of 150 μg/L carbaryl). The synthesized sensing material showed good stability for at least 3 months after preparation. Finally, the applicability to carbaryl determination in real samples was evaluated through the successful determination of the pesticide in spiked mineral and tap water samples. Figure Schematic diagram of carbaryl recognition process by an halogenated molecularly imprinted polymer for room temperature phosphorescence detection of the analyte.  相似文献   

8.
Lee  Mei-Hwa  Thomas  James L.  Chen  Yun-Chao  Chin  Wei-Ti  Lin  Hung-Yin 《Mikrochimica acta》2013,180(15):1393-1399

The replacement of antibodies by molecularly imprinted polymers (MIPs) has been investigated for many decades. However, indirect protocols (including natural primary and secondary antibodies) are still utilized to evaluate the ability of MIP thin films to recognize target molecules. MIPs can be prepared as either a thin film or as particles, and cavities that are complementary to the template can be generated on their surfaces. We have prepared thin film MIPs and particle MIPs prepared by solvent evaporation and phase inversion, respectively, from solutions of poly(ethylene-co-vinyl alcohol) (pEVAL) in the presence of the target analytes amylase, lysozyme, and lipase. These were first adsorbed on MIP thin films and by MIP particles that contain fluorescent quantum dots. Sandwich fluoroimmunoassays were then conducted to quantify them in MIP-coated 96-well microplates. The method was applied to determine amylase in saliva, and results were compared with a commercial analytical system.

  相似文献   

9.
Two series of molecularly imprinted polymers (MIPs) for the class-selective recognition of glucuronides have been prepared by using lipophilic substructures of the target analyte as template molecule and potent host monomers against oxyanions, that are expected to establish a strong stoichiometric interaction with the single carboxylic group of the template. The polymers were tested as stationary phases in liquid chromatography for specific recognition. A preliminary investigation of the imprinting properties of eleven MIPs was carried out, by comparing the retention time of the template and of structurally related compounds on the MIP column with that on the corresponding non-imprinted polymer (NIP). The two polymers showing the best performance were selected to further test cotinine, mycophenolic acid, testosterone and their respective glucuronides as model compounds. The high specificity obtained against glucuronides and the different chemical structure of the parent drug make the two MIPs class-selective imprinted receptors, also suitable for SPE application.  相似文献   

10.
分子印迹是合成预定选择性固定相的新兴技术,整体柱是新型的色谱固定相技术。将分子印迹聚合物与整体柱技术相结合,可以有效提高液相色谱的分离效率,有助于推动整个分离科学的发展,意义重大,是当今分析化学的研究热点。本文就分子印迹液相色谱整体柱的制备合成、色谱分离条件以及物理化学特性评价方法等方面的研究进展进行了较系统的综述,并对该技术目前存在的问题和发展前景进行了探讨。  相似文献   

11.
A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed. Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs) were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%, respectively), demonstrating the feasibility of the prepared MIP for IDM extraction. Figure Molecularly imprinted polymer-based solid-phase extraction for indomethacin  相似文献   

12.
Shabi Abbas Zaidi 《Electrophoresis》2013,34(9-10):1375-1382
To extend the application of molecularly imprinted polymers, the dual‐templates molecularly imprinted monolithic columns were developed in a capillary format. Two templates serotonin and histamine were simultaneously imprinted using two different functional monomers such as methacrylic acid (MAA) and methylenesuccinic acid (MSA) in a mixture of ethylene glycol dimethacrylate (EDMA) as a cross‐linker and AIBN as polymerization initiator dissolved in DMF as porogen. The resulting molecular imprinted polymers (MIPs) were characterized based on their performance in the CEC separation of two imprinted templates. The optimization parameters such as pH, ACN composition, and concentration of the eluent were varied to achieve best resolution and efficiency for CEC separation of templates with each MIP column. It was found that the MIP monolith column fabricated using MSA offered better resolution and separation efficiency compared to column fabricated with MAA. This work utilized the dual‐templates imprinting approach successfully and broadens the scope of multi‐templates imprinting capabilities in capillary format in CEC application.  相似文献   

13.
Environmental analysis is a potential key application for chemical sensors owing to their inherent ability to detect analytes on-line and in real time in distributed systems. Operating a chemosensor in a natural environment poses substantial challenges in terms of ruggedness, long-term stability and calibration. This article highlights current trends of achieving both the necessary selectivity and ruggedness: one way is deploying sensor arrays consisting of robust broadband sensors and extracting information via chemometrics. If using only a single sensor is desired, molecularly imprinted polymers offer a straightforward way for designing artificial recognition materials. Molecularly imprinted polymers can be utilized in real-life environments, such as water and air, aiming at detecting analytes ranging from small molecules to entire cells. Figure    相似文献   

14.
The work done during the past decade in order to adapt molecularly imprinted polymers (MIPs) to the capillary format and subsequently use these highly selective matrices for capillary electrochromatography (CEC) are reviewed in this article. MIPs are prepared utilizing a templated polymer synthesis where the template addresses the selectivity of the resulting polymer. These polymers possess binding characteristics that are comparable to the biological antibodies. Due to the polyclonality of the binding sites in the MIP, the separation result in severe peak broadening and tailing when performed in the isocratic mode. This was seen early in the development of MIPs as selective stationary phases in liquid chromatography (LC). As a mean of decreasing these problems, much effort was put into adapting the MIP to fit in CEC systems, that offers an efficiency that is superior to that in LC. Aiming to increase the efficiency of the MIP-CEC systems, different MIP formats have been developed that can be divided into three conceptually different categories, i.e., the monolithic, the microparticle and the coating. The strive for MIP formats that can be used in small bore capillaries has led to the development of MIP formats applicable to miniaturized systems approaching the chip format. Although prepared in order to perform MIP-CEC mediated separations, these formats can be used in a broad range of applications were the characteristics of the MIP, e.g. stability, selectivity and cost efficiency, could offer an interesting solution to cover the needs.  相似文献   

15.
Despite the increasing number of applications of molecularly imprinted polymers (MIP) in analytical chemistry, the synthesis of polymers with hemin introduced as the catalytic center to mimic the active site of peroxidase remains as a challenge. In the current work, a new type of molecularly imprinted polymer (MIP) was synthesized with 4-aminophenol (4-APh) as the template and two monomers: hemin, which acts as the catalytic center, and methacrylic acid (MAA), which is used to build the active sites. This work shows that MIP successfully mimics peroxidase. For this purpose, a flow injection analysis system coupled to an amperometric detector was investigated through multivariate analysis. The determination of 4-APh was not affected by the equimolar presence of structurally similar phenol compounds, including catechol, 4-chloro-3-methylphenol, 2-aminophenol, guaiachol, chloroguaiachol and 2-cresol, thus highlighting the good performance of the imprinted polymer. Under the optimized experimental conditions, an analytical curve covering a wide linear response range from 0.8 up to 500 μmol L−1 (r > 0.999) was obtained, and the method gave satisfactory precisions (n = 8), as evaluated via the relative standard deviation (RSD), of 4.1 and 3.2% for solutions of 4-APh of 50 and 500 μmol L−1, respectively. Recoveries of 96–111% from water samples (tap water and river water) spiked with 4-APh were achieved, thus illustrating the accuracy of the proposed system. Figure Schematic presentation of the synthesis of the MIP  相似文献   

16.
A β-estradiol receptor binding mimic was synthesised using molecular imprinting. Bulk polymers and spherical polymer nanoparticles based on methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinker, respectively, were prepared in acetonitrile. The selectivity was evaluated by radioligand binding assays. The imprinted polymers were very specific to β-estradiol since the control polymers bound virtually none of the radioligand. The bulk polymer was then employed to screen endocrine disrupting chemicals. Structurally related steroids like α-estradiol, estrone and ethynylestradiol showed, respectively, 14.0, 5.0 and 0.7% of relative binding to the β-estradiol polymer, whereas most unrelated chemicals did not bind at all. These results are compared to those obtained with a bioassay using stably transfected yeast cells in culture bearing the human estrogen receptor. The receptor was activated by several estrogen-like chemicals and to a lesser extent by some structurally related chemicals. Figure A molecularly imprinted polymer that was a synthetic receptor for beta-estradiol was used for the screening of endocrine disrupting chemicals that are structurally related or unrelated to beta-estradiol. The results were compared with the recognition of the compounds by the biological estrogen receptor expressed in yeast cells. Related steroids like alpha-estradiol, estrone and ethynylestradiol showed significant binding to the beta-estradiol imprinted polymer, whereas most unrelated chemicals did not bind. The biological receptor was activated by several estrogen-like chemicals, and to a lesser extent by some structurally related chemicals  相似文献   

17.
Molecularly imprinted polymers (MIPs) are tailor-made synthetic polymers with a predetermined selectivity for a given analyte, or group of structurally related compounds, that make them ideal materials for use as stationary phases in affinity chromatography. However, extensive peak broadening and tailing, especially of the more retained compound (normally the template) are often observed. Thus, huge efforts have been made during recent years to use MIPs in capillary electrochromatography, which is inherently a more efficient chromatographic technique than conventional HPLC. Accordingly, this paper gives an overview of the attempts carried out in the recent past to improve the chromatographic performance of MIPs in capillary electrochromatography as well as more recent applications. It is concluded that MIPs are very promising materials for use as selective stationary phases in CEC.  相似文献   

18.
模板结构与分子印迹效果间关系的研究   总被引:10,自引:0,他引:10  
以一些分子量和体积都较小的简单化合物作为模板分子,合成分子印迹聚合物 。通过总结43种化合物的分子印迹聚合物的色谱数据,来研究模板分子的分子量、 作用位点数目、分子刚性等因素与印迹效果的关系。根据免疫学中免疫原性的定义 ,我们提出“印迹原性”的概念,即,化合物能够产生印迹效应的性质称为印迹原 性;具有印迹原必的化合物称为印迹原;并讨论了具有较强选择性的印迹原的化学 基础。所得到的结论将有助于对分子印迹聚合物的识别机理的进一步理解,并且对 于根据模板分子性质预测MIP分子识别能力将具有一定的指导意义。  相似文献   

19.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

20.
The authors have prepared amino-functionalized carbon dots (AC-dots) and applied them to fluorescently label a molecularly imprinted polymer (MIP) prepared by using 2,4-dinitrotoluene (DNT) as a template. Since DNT can retard vinyl polymerization, poly(methyl acrylate-co-acrylic acid) was used as a monomer. Non-imprinted polymers (NIPs) were also synthesized in order to compare data. As expected, MIPs exhibit higher adsorption than NIPs, with imprinting efficiencies ranging from 2 to 2.5. DNT is specifically captured by the cavities in the MIP and interact with AC-dots on the surface, resulting in quenching of the fluorescence of the AC-dots. Response to DNT reaches equilibrium within ~30 min. The method has a dynamic range that extends from 1 to 15 ppm, and allows for quantitation of DNT in aqueous solutions, with a detection limit of 0.28 ppm. Selectivity tests conducted in presence of DNT analogs demonstrated the selective recognition of DNT.
Graphical Abstract Schematic of the preparation of molecularly imprinted polymers labeled with amino-functionalized carbon dots (AC-dots) for the quenchometric determination of 2,4-dinitrotoluene (DNT).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号