首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lamb-dips have been observed in the weak calcium intercombination line by monitoring resonance fluorescence in an atomic beam excited by light of a stabilized cw dye laser inside or outside the laser cavity. A highly sensitive detection scheme is described.  相似文献   

2.
We report on the detection of single, slowly moving Rubidium atoms using laser-induced fluorescence. The atoms move at 3 m/s while they are detected with a time resolution of 60 μs. The detection scheme employs a near-resonant laser beam that drives a cycling atomic transition, and a highly efficient mirror setup to focus a large fraction of the fluorescence photons to a photomultiplier tube. It counts on average 20 photons per atom.  相似文献   

3.
We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitationalwave space observatory(AIGSO). It is motivated by the progress in the atomic matter-wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the a√tom interferometer, the frequency and amplitude of gravitational-waves.The scheme has a strain sensitivity 10~(-20)/Hz~(1/2) in the 100 mHz–10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser interferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan.  相似文献   

4.
An Experiment to Demonstrate the Hyperfine Splitting of Atoms in a Lecture Hall The detection of laser induced fluorescence from a thermal atomic beam allows in a simple way for the observation of the hyperfine splitting of ground and excited Na-atoms. A suitable experimental setup is able to show in a lecture hall not only the atomic beam itself but also the consequences of electron and nuclear spin. The laser light used is transmitted from the laser in the laboratory into the lecture hall by a fiber glass cable. The experiment is able to show also the effects of optical pumping and, if additionally an external magnetic field is applied to the observation region, the Zeeman effect.  相似文献   

5.
The frequency distribution of the fluorescent light induced by monochromatic dye laser radiation was investigated. To exclude the influence of the Doppler width a strongly collimated atomic beam was used. The spectrum was measured by means of a piezoelectrically tunable spherical Fabry Perot. The interaction region between the laser light and the atomic beam was placed into the center of the interferometer. Thus the observed fluorescence spectrum was considerably more intense than in the case where the interferometer is used separately from the beam. The fluorescence spectrum was observed for different directions of polarization of the incident laser beam. In the case of weak excitation the spectrum consists of a sharp component essentially due to elastically scattered light. At high intensities a structure of three components is observed which is in agreement with theoretical predictions when circularly polarized light is used for excitation.  相似文献   

6.
The frequency distribution of the fluorescent light induced by monochromatic dye laser radiation was investigated. To exclude the influence of the Doppler width a strongly collimated atomic beam was used. The spectrum was measured by means of a piezoelectrically tunable spherical Fabry Perot. The interaction region between the laser light and the atomic beam was placed into the center of the interferometer. Thus the observed fluorescence spectrum was considerably more intense than in the case where the interferometer is used separately from the beam. The fluorescence spectrum was observed for different directions of polarization of the incident laser beam. In the case of weak excitation the spectrum consists of a sharp component essentially due to elastically scattered light. At high intensities a structure of three components is observed which is in agreement with theoretical predictions when circularly polarized light is used for excitation.  相似文献   

7.
A novel optical arrangement for fluorescence detection that employs spatial separation as well as spectral filter to increase the signal to noise ratio is proposed. Using a prism and two mirrors, the elliptical laser beam of a laser diode, as an excitation light, is homogenized and the transmitted excitation light is separated from the fluorescence not to reach the collecting optics. Uncooled CCD can capture the fluorescence image of up to 40 fluorescently-labeled protein patterns without scanning or mechanical translation. This paper presents the simulation, construction and measurement results of the developed optical system. The measurements show that the combination of prism and mirrors converts the excitation light from the laser diode to uniform illumination on the specimen, and provides the separation between excitation and fluorescence light to give high signal to noise ratio. It is also possible to assay various protein concentrations ranging from 1000 to 10 ng/ml reliably. We believe that the proposed fluorescence detection system can be used to build a commercially valuable, low cost, hand-held or miniature fast detection device for point-of-care applications.  相似文献   

8.
We propose a scheme for generating two-mode squeezing in high-Q resonators using a beam of atoms with random arrival times, which acts as a reservoir for the field. The scheme is based on four-wave mixing processes leading to emission into two cavity modes, which are resonant with the Rabi sidebands of the atomic dipole transition, driven by a saturating classical field. At steady state the cavity modes are in an Einstein-Podolsky-Rosen state, whose degree of entanglement is controlled by the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the atomic beam, does not require atomic detection nor velocity selection, and can be realized by presently available experimental setups with microwave resonators.  相似文献   

9.
利用BIBO(BiB3O6)晶体的倍频效应,由半导体激光器产生的波长为846 nm激光可以获得波长为423 nm的蓝光。真空室内的钙炉在加热到600 ℃时产生钙原子束。将423 nm激光垂直照射到钙原子束上,用光电探测器可以获得钙原子束的荧光谱,谱线的半峰全宽(FWHM)为100 MHz。  相似文献   

10.
Dual-frequency optical pumping for spin-polarizing a lithium atomic beam   总被引:1,自引:0,他引:1  
A lithium-6 atomic beam is spin-polarized by means of optical pumping with a single-mode dye laser operating on the resonance transition. Simultaneous pumping of both hyperfine substates is achieved by frequency-splitting the laser light with an acousto-optic modulator. A polarization dependent signal, obtained by probing the optical activity of the beam with linearly polarized light, is utilized in a microprocessor-controlled laser stabilization scheme. The polarization is analyzed with a sextupole magnet and its overall value is 0.70 for an intensity of 1×1014 atms s−1. By reversing the sense of circular polarization of the pumping light the atomic beam polarization is easily reversed in direction.  相似文献   

11.
Two-photon excitation provides efficient optical sectioning in three-dimensional fluorescence microscopy, independently of a confocal detection. In two-photon laser-scanning microscopy, the image resolution is governed by the volume of the excitation light spot, which is obtained by focusing the incident laser beam through the objective lens of the microscope. The light spot being strongly elongated along the optical axis, the axial resolution is much lower than the transverse one. In this Letter we show that it is possible to strongly reduce the axial size of the excitation spot by shaping the incident beam and using a mirror in place of a standard glass slide to support the sample. Provided that the contribution of sidelobes can be removed through deconvolution procedures, this approach should allow us to achieve similar axial and lateral resolution.  相似文献   

12.
A scheme is proposed to observe interference of atoms by using a weakly coherent atomic beam scattered at two standing light waves. It is shown that atoms can transfer spatial coherence over rather large distances.  相似文献   

13.
We point out the influence of the different noise sources which occur in the detection of the fluorescence signal induced by a laser in an atomic beam. We have developed a theoretical model which takes account of the atomic shot noise, photon noise, laser-frequency noise and a partition noise linked to the imperfect detection of the fluorescence photons. The calculations have been performed for two- and three-level atomic systems. We detail the own contribution of each noise source and give some predictions concerning the value of the fluorescence signal to noise ratio. We determine predominance domains of each noise source which depend on the values of key parameters such as the atomic flux intensity and the laser spectral linewidth. We particularly show that the laser-frequency noise, which induces a coupling between the emission of fluorescence photons by various atoms, leads to a saturation of the S/N ratio for intense atomic fluxes. Moreover, we point out that the optical pumping process associated with a three level atomic system leads to an interesting laser-noise filtering effect.  相似文献   

14.
We introduce a scheme for creating continuous variable entanglement between an atomic beam and an optical field, by using squeezed light to outcouple atoms from a Bose-Einstein condensate via a Raman transition. We model the full multimode dynamics of the atom laser beam and the squeezed optical field and show that, with appropriate two-photon detuning and two-photon Rabi frequency, the transmitted light is entangled in amplitude and phase with the outcoupled atom laser beam. The degree of entanglement is controllable via changes in the two-photon Rabi frequency of the outcoupling process.  相似文献   

15.
While all Atomic Parity Violation experiments on highly forbidden transitions in a Stark field have used the detection of fluorescence signals, our group is engaged in an experiment on the cesium transition that uses a pump-probe scheme. The role of the probe beam is to detect the 7S state by stimulated emission. The detected Left-Right asymmetry () appears directly on the transmitted probe beam and the technique relies on differential-mode atomic polarimetry. We present here experimental results which illustrate two essential features of this approach. First, is amplified when the optical thickness for the probe beam is increased, hence it is an increasing function of the Stark field. Secondly, the experimental sensitivity to is simultaneously increase d, as demonstrated by our measurements of the signal-to-noise ratio. We emphasize also the advantage of choosing a probe transition that involves a “dark” state: the amplification is preserved at high levels of the probe intensity because saturation effects are greatly reduced. Received: 8 october 1997 / Accepted: 21 November 1997  相似文献   

16.
A three dimensional dark focal spot uniformly surrounded by light   总被引:1,自引:0,他引:1  
A new technique is proposed for generating a tight dark focal spot surrounded by uniform light intensity in all directions. It is based on a single focusing lens illuminated from one side, hence the alignment sensitivities associated with 4π methods are eliminated. Such a beam can be useful, e.g. as a dark atomic trap, and as the erase beam in three dimensional super-resolution fluorescence microscopy.  相似文献   

17.
A quick and simple detection system for spatially resolved temperature measurements in flames based on laser-induced thermally assisted atomic line fluorescence of seeded rubidium atoms is described. The fluorescence light from two atomic states is dispersed and simultaneously recorded by a CCD camera. The fluorescence ratio distributions lead directly to absolute temperature distributions. The practical use, the spatial and temperature resolution and error limits of the method are discussed and compared with other procedures for temperature measurements.  相似文献   

18.
陈国钧  周巧巧  纪宪明  印建平 《物理学报》2014,63(8):83701-083701
提出了利用π相位板产生矢量空心光束的新方案,两个偏振方向互相垂直的线偏振光波分别通过π相位板调制后进行强度叠加,得到椭圆空心光束,用矩形光阑调节相位板的几何尺寸,可以实时调节椭圆的离心率;调节π相位板的方位,能够实现径向矢量空心光束到角向矢量空心光束的转换。分析、讨论了方案的可行性和在原子光学中的潜在应用,结果表明:本方案在原子光学中有很好的应用前景。  相似文献   

19.
This paper presents a scheme for generating three-particle W state of remote atoms trapped in leaky cavities.The scheme uses cavity decay to inject photons into a setup of optical devices which consist of a series of beam splitters and photon detectors.Photon detection on the output mode projects the atomic state into the W state.In the condition of “weakly driven approach”,it shows that the scheme is robust and has high fidelity.It also points out that the scheme is scalable to generate multi-atomic W state.  相似文献   

20.
We present a new scheme to report on Goos–Hänchen (GH) shift experienced by the Gaussian light beam interacting with an optical cavity filled with four-level sodium atomic medium in the spectral hole burning region with and without Doppler broadening effect. Theoretical atomic density-matrix formalism is employed to obtain the susceptibility of atomic medium while the stationary-phase-theory is used to compute the GH shift in the reflected and transmitted probe beams subjected to control fields. A steep normal slope of dispersion is observed with a maximum and zero probability of transmission and reflection coefficients, respectively, at the regions of the spectral holes burning. In the normal dispersion spectrum at the region of spectral hole burning, positive and negative GH shift is observed, respectively, in the transmitted and reflected light beams. However, at anomalous dispersive regions negative GH shift in the transmission beam and positive GH shift in the reflection beam is observed. The reflection and transmission coefficients as well as the spatial GH shift are the functions of probe detuning, collective phase of control fields, beam incident angle and inverse Doppler broadening effect in the spectral hole burning region. The position and number of spectral holes also depend on the same spectral parametrs as stated above. The study is expected to be useful for optoelectronic devices and optical-clocking applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号