首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
It is conjectured that the set ${\mathcal {G}}$ of the primitive roots modulo p has no decomposition (modulo p) of the form ${\mathcal {G}= \mathcal {A} +\mathcal {B}}$ with ${|\mathcal {A}|\ge 2}$ , ${|\mathcal {B} |\ge 2}$ . This conjecture seems to be beyond reach but it is shown that if such a decomposition of ${\mathcal {G}}$ exists at all, then ${|\mathcal {A} |}$ , ${|\mathcal {B} |}$ must be around p 1/2, and then this result is applied to show that ${\mathcal {G}}$ has no decomposition of the form ${\mathcal {G} =\mathcal {A} + \mathcal {B} + \mathcal {C}}$ with ${|\mathcal {A} |\ge 2}$ , ${|\mathcal {B} |\ge 2}$ , ${|\mathcal {C} |\ge 2}$ .  相似文献   

2.
In classical linear algebra, extending the ring of scalars of a free module gives rise to a new free module containing an isomorphic copy of the former and satisfying a certain universal property. Also, given two free modules on the same ring of scalars and a morphism between them, enlarging the ring of scalars results in obtaining a new morphism having the nice property that it coincides with the initial map on the isomorphic copy of the initial free module in the new one. We investigate these problems in the category of free ${\mathcal{A}}$ -modules, where ${\mathcal{A}}$ is an ${\mathbb{R}}$ -algebra sheaf. Complexification of free ${\mathcal{A}}$ -modules, which is defined to be the process of obtaining new free ${\mathcal{A}}$ -modules by enlarging the ${\mathbb{R}}$ -algebra sheaf ${\mathcal{A}}$ to a ${\mathbb{C}}$ -algebra sheaf, denoted ${\mathcal{A}_\mathbb{C}}$ , is an important particular case (see Proposition 2.1, Proposition 3.1). Attention, on the one hand, is drawn on the sub- ${_{\mathbb{R}}\mathcal{A}}$ -sheaf of almost complex structures on the sheaf ${{_\mathbb{R}}\mathcal{A}^{2n}}$ , the underlying ${\mathbb{R}}$ -algebra sheaf of a ${\mathbb{C}}$ -algebra sheaf ${\mathcal{A}}$ , and on the other hand, on the complexification of the functor ${\mathcal{H}om_\mathcal {A}}$ , with ${\mathcal{A}}$ an ${\mathbb{R}}$ -algebra sheaf.  相似文献   

3.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

4.
Let ${(\Omega, \mathcal{F}, P)}$ be a probability space. For each ${\mathcal{G}\subset\mathcal{F}}$ , define ${\overline{\mathcal{G}}}$ as the σ-field generated by ${\mathcal{G}}$ and those sets ${F\in \mathcal{F}}$ satisfying ${P(F)\in\{0,1\}}$ . Conditions for P to be atomic on ${\cap_{i=1}^k\overline{\mathcal{A}_i}}$ , with ${\mathcal{A }_1,\ldots,\mathcal{A}_k\subset\mathcal{F}}$ sub-σ-fields, are given. Conditions for P to be 0-1-valued on ${\cap_{i=1}^k \overline{\mathcal{A}_i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.  相似文献   

5.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

6.
We investigate the relation between the cone ${\mathcal{C}^{n}}$ of n × n copositive matrices and the approximating cone ${\mathcal{K}_{n}^{1}}$ introduced by Parrilo. While these cones are known to be equal for n ≤ 4, we show that for n ≥ 5 they are not equal. This result is based on the fact that ${\mathcal{K}_{n}^{1}}$ is not invariant under diagonal scaling. We show that for any copositive matrix which is not the sum of a nonnegative and a positive semidefinite matrix we can find a scaling which is not in ${\mathcal{K}_{n}^{1}}$ . In fact, we show that if all scaled versions of a matrix are contained in ${\mathcal{K}_{n}^{r}}$ for some fixed r, then the matrix must be in ${\mathcal{K}_{n}^{0}}$ . For the 5 × 5 case, we show the more surprising result that we can scale any copositive matrix X into ${\mathcal{K}_{5}^{1}}$ and in fact that any scaling D such that ${(DXD)_{ii} \in \{0,1\}}$ for all i yields ${DXD \in \mathcal{K}_{5}^{1}}$ . From this we are able to use the cone ${\mathcal{K}_{5}^{1}}$ to check if any order 5 matrix is copositive. Another consequence of this is a complete characterisation of ${\mathcal{C}^{5}}$ in terms of ${\mathcal{K}_{5}^{1}}$ . We end the paper by formulating several conjectures.  相似文献   

7.
In a natural way, we can ??lift?? any operation defined on a set A to an operation on the set of all non-empty subsets of A and obtain from any algebra ( ${A, \Omega}$ ) its power algebra of subsets. G. Gr?tzer and H. Lakser proved that for a variety ${\mathcal{V}}$ , the variety ${\mathcal{V}\Sigma}$ generated by power algebras of algebras in ${\mathcal{V}}$ satisfies precisely the consequences of the linear identities true in ${\mathcal{V}}$ . For certain types of algebras, the sets of their subalgebras form subalgebras of their power algebras. They are called the algebras of subalgebras. In this paper, we partially solve a long-standing problem concerning identities satisfied by the variety ${\mathcal{VS}}$ generated by algebras of subalgebras of algebras in a given variety ${\mathcal{V}}$ . We prove that if a variety ${\mathcal{V}}$ is idempotent and entropic and the variety ${\mathcal{V}\Sigma}$ is locally finite, then the variety ${\mathcal{VS}}$ is defined by the idempotent and linear identities true in ${\mathcal{V}}$ .  相似文献   

8.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

9.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

10.
In this paper, a general orthogonal transformation on the optimal quaternary sequence Families ${\mathcal{B}}$ and ${\mathcal{C}}$ is presented. Consequently, the known optimal Family ${\mathcal{D}}$ and a new optimal Family ${\mathcal{E}}$ are produced in a uniform method. In contrast to the known optimal Family ${\mathcal{D}}$ , the new Family ${\mathcal{E}}$ has the same parameters such as the sequence length 2(2 n ? 1), the family size 2 n , and the maximal nontrivial correlation value ${2^{\frac{n+1}{2}}+2}$ , where n is a positive integer, but with a different correlation function.  相似文献   

11.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

12.
For ?? > 0, the Banach space ${\mathcal{F}_{\alpha}}$ is defined as the collection of functions f which can be represented as integral transforms of an appropriate kernel against a Borel measure defined on the unit circle T. Let ?? be an analytic self-map of the unit disc D. The map ?? induces a composition operator on ${\mathcal{F}_{\alpha}}$ if ${C_{\Phi}(f) = f \circ \Phi \in \mathcal{F}_{\alpha}}$ for any function ${f \in \mathcal{F}_{\alpha}}$ . Various conditions on ?? are given, sufficient to imply that C ?? is bounded on ${\mathcal{F}_{\alpha}}$ , in the case 0 < ?? < 1. Several of the conditions involve ???? and the theory of multipliers of the space ${\mathcal{F}_{\alpha}}$ . Relations are found between the behavior of C ?? and the membership of ?? in the Dirichlet spaces. Conditions given in terms of the generalized Nevanlinna counting function are shown to imply that ?? induces a bounded composition operator on ${\mathcal{F}_{\alpha}}$ , in the case 1/2 ?? ?? < 1. For such ??, examples are constructed such that ${\| \Phi \|_{\infty} = 1}$ and ${C_{\Phi}: \mathcal{F}_{\alpha} \rightarrow \mathcal{F}_{\alpha}}$ is bounded.  相似文献   

13.
Let ${\mathcal{A} = (A; F)}$ be an algebra with T the set of all its term operations. For any permutation τ of A, the induced mapping ${f \to \tau\circ f\circ\tau^{-1}}$ defines a permutation ${\tau^{\star}}$ of the set of all finitary operations on the set A. We say that τ is a weak automorphism of ${\mathcal{A}}$ if and only if τ*(T) = T. Of course any automorphism α of ${\mathcal{A}}$ is a weak automorphism, because α*(t) = t for all ${t \in T}$ . The set of all weak automorphisms of ${\mathcal{A}}$ forms a subgroup of the symmetric group on A. In this paper, we describe weak automorphisms of the dihedral groups ${\mathcal{D}_n}$ for n ≥ 3. We show that the weak automorphism group of ${\mathcal{D}_n}$ is a semidirect product of the group of automorphisms of ${\mathcal{D}_n}$ and some group related to the group of invertible elements of the ring ${\mathbb{Z}_n}$ .  相似文献   

14.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

15.
Let ${\mathcal{K}}$ be a family of simply connected sets in the plane. If every countable subfamily of ${\mathcal{K}}$ has an intersection that is starshaped via orthogonally convex paths, then ${\mathcal{K}}$ itself has such an intersection. For the d-dimensional case, let ${\mathcal{K}}$ be a family of compact sets in ${\mathbb{R}^d}$ . If every finite subfamily of ${\mathcal{K}}$ has an intersection that is starshaped via orthogonally convex paths, again ${\mathcal{K}}$ itself has such an intersection.  相似文献   

16.
Let ${\mathcal{A}}$ be a collection of n linear hyperplanes in ${\mathbb{k}^\ell}$ , where ${\mathbb{k}}$ is an algebraically closed field. The Orlik-Terao algebra of ${\mathcal{A}}$ is the subalgebra ${{\rm R}(\mathcal{A})}$ of the rational functions generated by reciprocals of linear forms vanishing on hyperplanes of ${\mathcal{A}}$ . It determines an irreducible subvariety ${Y (\mathcal{A})}$ of ${\mathbb{P}^{n-1}}$ . We show that a flat X of ${\mathcal{A}}$ is modular if and only if ${{\rm R}(\mathcal{A})}$ is a split extension of the Orlik-Terao algebra of the subarrangement ${\mathcal{A}_X}$ . This provides another refinement of Stanley’s modular factorization theorem [34] and a new characterization of modularity, similar in spirit to the fibration theorem of [27]. We deduce that if ${\mathcal{A}}$ is supersolvable, then its Orlik-Terao algebra is Koszul. In certain cases, the algebra is also a complete intersection, and we characterize when this happens.  相似文献   

17.
We denote by Conc A the ${(\vee, 0)}$ -semilattice of all finitely generated congruences of an algebra A. A lifting of a ${(\vee, 0)}$ -semilattice S is an algebra A such that ${S \cong {\rm Con}_{\rm c} A}$ . The assignment Conc can be extended to a functor. The notion of lifting is generalized to diagrams of ${(\vee, 0)}$ -semilattices. A gamp is a partial algebra endowed with a partial subalgebra together with a semilattice-valued distance; gamps form a category that lends itself to a universal algebraic-type study. The raison d’être of gamps is that any algebra can be approximated by its finite subgamps, even in case it is not locally finite. Let ${\mathcal{V}}$ and ${\mathcal{W}}$ be varieties of algebras (on finite, possibly distinct, similarity types). Let P be a finite lattice. We assume the existence of a combinatorial object, called an ${\aleph_0}$ -lifter of P, of infinite cardinality ${\lambda}$ . Let ${\vec{A}}$ be a P-indexed diagram of finite algebras in ${\mathcal{V}}$ . If ${{\rm Con}_{\rm c} \circ \vec{A}}$ has no partial lifting in the category of gamps of ${\mathcal{W}}$ , then there is an algebra ${A \in \mathcal{V}}$ of cardinality ${\lambda}$ such that Conc A is not isomorphic to Conc B for any ${B \in \mathcal{W}}$ . This makes it possible to generalize several known results. In particular, we prove the following theorem, without assuming that ${\mathcal{W}}$ is locally finite. Let ${\mathcal{V}}$ be locally finite and let ${\mathcal{W}}$ be congruence-proper (i.e., congruence lattices of infinite members of ${\mathcal{W}}$ are infinite). The following equivalence holds. Every countable ${(\vee, 0)}$ -semilattice with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ if and only if every ${\omega}$ -indexed diagram of finite ${(\vee, 0)}$ -semilattices with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ . Gamps are also applied to the study of congruence-preserving extensions. Let ${\mathcal{V}}$ be a non-semidistributive variety of lattices and let n ≥ 2 be an integer. There is a bounded lattice ${A \in \mathcal{V}}$ of cardinality ${\aleph_1}$ with no congruence n-permutable, congruence-preserving extension. The lattice A is constructed as a condensate of a square-indexed diagram of lattices.  相似文献   

18.
In this paper we investigate the classification of mappings up to ${\mathcal{K}}$ -equivalence. We give several results of this type. We study semialgebraic deformations up to semialgebraic C 0 ${\mathcal{K}}$ -equivalence and bi-Lipschitz ${\mathcal{K}}$ -equivalence. We give an algebraic criterion for bi-Lipschitz ${\mathcal{K}}$ -triviality in terms of semi-integral closure (Theorem 3.5). We also give a new proof of a result of Nishimura: we show that two germs of smooth mappings ${f, g: \mathbb{R}^n \to \mathbb{R}^n}$ , finitely determined with respect to ${\mathcal{K}}$ -equivalence are C 0- ${\mathcal{K}}$ -equivalent if and only if they have the same degree in absolute value.  相似文献   

19.
Denote by ${\mathcal{C}\ell_{p,q}}$ the Clifford algebra on the real vector space ${\mathbb{R}^{p,q}}$ . This paper gives a unified tensor product expression of ${\mathcal{C}\ell_{p,q}}$ by using the center of ${\mathcal{C}\ell_{p,q}}$ . The main result states that for nonnegative integers p, q, ${\mathcal{C}\ell_{p,q} \simeq \otimes^{\kappa-\delta}\mathcal{C}_{1,1} \otimes Cen(\mathcal{C}\ell_{p,q}) \otimes^{\delta} \mathcal{C}\ell_{0,2},}$ where ${p + q \equiv \varepsilon}$ mod 2, ${\kappa = ((p + q) - \varepsilon)/2, p - |q - \varepsilon| \equiv i}$ mod 8 and ${\delta = \lfloor i / 4 \rfloor}$ .  相似文献   

20.
Let ${\mathcal{D}}$ be a nontrivial triplane, and G be a subgroup of the full automorphism group of ${\mathcal{D}}$ . In this paper we prove that if ${\mathcal{D}}$ is a triplane, ${G\leq Aut(\mathcal{D})}$ is flag-transitive, point-primitive and Soc(G) is an alternating group, then ${\mathcal{D}}$ is the projective space PG 2(3, 2), and ${G\cong A_7}$ with the point stabiliser ${G_x\cong PSL_3(2)}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号