首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
In recent years, research groups have used metal-metal point contact diodes for frequency mixing and detection of infrared laser radiation. It has been postulated that the mechanism for the nonlinear current-voltage characteristic of the diode is the tunneling of electrons through an intermediate oxide film from the whisker tip to the metal base, i.e., the configuration is considered to be a metal-oxide-metal (MOM) tunneling junction. Several features of the diodes' operation create considerable doubt concerning the applicability of the MOM tunneling mechanism. Analysis of the available data led us to postulate an alternate solid state mechanism, namely a thermally enhanced field emission process. Such emission would be a consequence of the immersion of the whisker in the laser radiation resulting in (1) conduction heating which induces thermionic emission and (2) generation of an electric field at the tip necessary for electron tunneling. In an earlier paper, we calculated the power absorbed by the cylindrical shank of a point contact diode in an infrared radiation field. Using the absorbed power as a source, detailed calculations were made of the laser induced temperature distributions on the diode; more approximate treatments were used to obtain the electric fields developed on the tip. Values of the computed temperature and field parameters for tungsten were found to be consistent with a thermal field emission process. In this paper we present a more rigorous calculation of the voltages and fields induced on different metal whisker tips by the incident laser radiation. Linear antenna theory is used to describe the receiving properties of the diode. The actual pointed geometry of the diode tip has been taken into account using Schelkunoff's theory of the conical antenna. The electric fields at the tip are found to be comparable with those necessary for field emission. The highest fields are established on gold tips, consistent with the experiments of Green et al. who found the best responsivity occurs with gold-gold contacts. Finally we discuss the significance of the experimental results of Young et al. on metal-vacuum-metal tunneling characteristics to the MOM tunneling hypothesis.  相似文献   

2.
In a series of recent experiments, research groups have made absolute frequency measurements with laser beams in the infrared region (μm) using a metal-metal point contact diode for the generation, frequency mixing and detection. At present there are two models which attempt to explain the rectification mechanism of the diode: 1) Tunneling of electrons through an intermediate oxide film from whisker to the metal base, i.e., configuration is considered to be a metal-oxide-metal (MOM) tunneling junction. 2) Rectification and nonlinear processes are the result of a thermal enchanced field emission. Such emission is a consequence of the immersion of the whisker in the laser radiation which results in conduction induced thermionic emission and/or generation of an electric field at the tip necessary for electron tunneling by field emission. The purpose of this comment is: a) to discuss qualitatively the basic difference between MOM and TFE theories as regards the origin of the nonlinearity and rectification properties of the metal point contact junction; b) to review the analyses describing the ultimate frequency response of the device; and 3) to provide a possible explanation for polarity reversal consistent with the TFE mechanism describing the operation of the whisker diode. This research was supported in part by the NATO Research Grants Program, Scientific Affairs, Brussels, Belgium, and under the auspices of the joint projects ESIS (electronic structure in solids) and IRIS (Institute for Research in Interface Sciences) of the Belgian Ministry for Science Policy  相似文献   

3.
The non-linear current-voltage characteristic of thermally enhanced field emission is proposed to explain the operation of a metal-metal point contact diode used for laser harmonic frequency generation and frequency mixing in the infrared region. This mechanism can explain several experimental observations which appear inconsistent with the previous analysis based on a planar metal-oxide-metal tunneling geometry.  相似文献   

4.
It is shown that in thin-film MOM diodes of contact area ~ 2.5 × 10-9 m2 the basic mechanism of infrared and visible laser radiation detection is the tunneling current dependence on contact temperature (thermally enhanced tunneling). Experiments were run on Al—Al2O3—Al MOM diodes.  相似文献   

5.
The features of terahertz radiation generated upon oblique incidence of a femtosecond laser pulse on a metal surface are investigated theoretically. We propose a Cherenkov-type generation mechanism associated with excitation of low-frequency surface currents by a p-polarized optical field. The nonlinear surface currents and corresponding electrodynamic characteristics of low-frequency radiation are calculated analytically and by numerical simulation using the hydrodynamic model. The features of Cherenkov generation of terahertz radiation are analyzed, and techniques are proposed for increasing efficiency.  相似文献   

6.
The field near a sharp metal tip can be strongly enhanced if irradiated with an optical field polarized along the tip axis. We demonstrate that the enhanced field gives rise to local second-harmonic (SH) generation at the tip surface thereby creating a highly confined photon source. A theoretical model for the excitation and emission of SH radiation at the tip is developed and it is found that this source can be represented by a single on-axis oscillating dipole. The model is experimentally verified by imaging the spatial field distribution of strongly focused laser modes.  相似文献   

7.
Radiative processes in a nonequilibrium e-h plasma are theoretically studied using a self-consistent solution of the kinetic equation and Maxwell’s equations. The terahertz emission from a finite-thickness semiconductor sample is due to the retardation and nonstationarity of the electromagnetic interaction of the photocurrent in the e-h plasma and the radiation field. The duplex waveform of the terahertz electromagnetic pulse for an arbitrary ratio of the radiation formation length and the plate thickness originates due to coherent radiative processes accompanying the generation of the e-h plasma at the input boundary and its extinction at the output boundary of a semiconductor plate through which a weakly absorbed ultrashort laser pulse propagates. The theoretical conclusions show analogies with the radiative phenomena accompanying the start-stop motion of external currents (Tamm problem) and the nonlinear interaction of optical waves in a finite-thickness medium.  相似文献   

8.
The current–voltage (IV) characteristics of individual nanofibres of lightly-doped polyacetylene show very strong nonlinearities. At low temperatures the IV characteristics are consistent with Zener-type tunnelling, and independent of temperature and magnetic field. We propose that this behaviour arises from tunnelling of a segment of the conjugated bond system in the presence of an electric field, in analogy to the soliton-pair creation mechanism proposed by Maki for conduction in charge-density-wave (CDW) materials. A comparison is made with analogous tunnelling conduction mechanisms reported in CDW and spin-density-wave systems at low temperatures. At higher temperatures the IV characteristics deviate from Zener-type behaviour and are temperature dependent, so other conduction mechanisms are important.  相似文献   

9.
Electroluminescent porous Si (PS) diodes exhibit various useful functions under a high-electric field. The experimental PS diodes are composed of thin semitransparent metal films, PS layers (about 500 nm thick in minimum), p- or n-type Si substrates and ohmic back contacts. Definite nonlinear electrical behavior (negative resistance and nonvolatile bistable memory effects) and cold electron emission phenomena appear in these PS diodes associated with the EL emission. Both the negative resistance and memory effects are related to the charging of Si nanocrystallites by field-induced carrier injection. The electron emission observed in the PS diodes formed on n+–Si substrates is caused by hot electrons tunnelling through the top contact. By an appropriate structural control of PS, the effective drift length under a high-field conduction is significantly increased, and then electrons are emitted ballistically. These functions reflect the activity of PS as a nanocrystalline confined system.  相似文献   

10.
The well-known defects of the surface of a solid, microscopic projections and spikes, play a decisive role in electron emission induced by an electric field. If there are mobile electrons of holes in the solid, then the electric field is enhanced by a factor of 10–100 at the tip of a microscopic projection. This effect was discovered in electrostatics more than a century ago. In turn, the probability of tunnel emission of an electron from a metal into a vacuum is an exponential function of the electric field strength. Correspondingly the electron emission current density at the tip of a microscopic spike can be larger than that on a smooth surface by an astronomical factor. This effect is particularly strikingly manifested when picosecond pulses of infrared laser radiation of moderate power are used to initiate autoelectronic emission. Relative to a smooth surface, the emission current density is enhanced by hundreds of orders of magnitude. These experimental conditions can be used to scan the surface of a conducting material with a laser beam and to detect all the microscopic projections, in order to male detailed observations with subpicosecond time resolution of the phase transition from autoelectronic emission to explosive emission. Polytechnic University, Tomsk. Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences. French National Scientific Center, Saclay, France. Translated from Izvestiya Vysshikh Uchenbnykh Zavedenii, Fizika, No. 11, pp. 42–44, November, 1997.  相似文献   

11.
The variation of conduction in island metallic Ti, Co, W, and FeNi films in weak electric field is studied. The variation of the differential conductivity of island metallic films with an electric field at temperatures from T = 77 to 300 K is measured, as well as the temperature dependence of the differential conductivity in the same temperature range. It is shown that a thermally activated conduction mode is realized in such structures. The mechanism of variation of conductivity of island metallic films in a weak electric field is discussed.  相似文献   

12.
The continuous-wave high efficiency laser emission of Nd:YVO4 at the fundamental wavelength of 914 nm and its 457 nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. 6.5 W at 457 nm with M 2=1.8 was obtained from a 5-mm-thick 0.4 at.% Nd:YVO4 laser medium and a 15-mm-long LBO nonlinear crystal in a Z-type cavity for 18.6 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.35. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing level 4F5/2, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

13.
《Physics letters. A》1998,248(1):16-18
The Dirac vacuum, polarized by a strong electric field E0, is discussed as nonlinear medium for laser radiation (LR). It is shown that such a medium leads to (a) a LR refractive index appearing, (b) LR polarization plane rotation, (c) LR second harmonic generation. It is proposed to use these effects for E0 field diagnostics.  相似文献   

14.
In this work we are studying the intense laser effects on the electron-related linear and nonlinear optical properties in GaAs–Ga1?xAlxAs quantum wells under applied electric and magnetic fields. The calculated quantities include linear optical absorption coefficient and relative change of the refractive index, as well as their corresponding third-order nonlinear corrections. The nonlinear optical rectification and the second and third harmonic generation coefficients are also reported. The DC applied electric field is oriented along the hererostructure growth direction whereas the magnetic field is taken in-plane. The calculations make use of the density matrix formalism to express the different orders of the dielectric susceptibility. Additionally, the model includes the effective mass and parabolic band approximations. The intense laser effects upon the system enter through the Floquet method that modifies the confinement potential associated to the heterostructure. The results correspond to several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation. They suggest that the nonlinear optical absorption and optical rectification are nonmonotone functions of the dimensions of the heterostructure and of the external perturbations considered in this work.  相似文献   

15.
We present an experimental and numerical study of electron emission from a sharp tungsten tip triggered by sub-8-fs low-power laser pulses. This process is nonlinear in the laser electric field, and the nonlinearity can be tuned via the dc voltage applied to the tip. Numerical simulations of this system show that electron emission takes place within less than one optical period of the exciting laser pulse, so that an 8 fs 800 nm laser pulse is capable of producing a single electron pulse of less than 1 fs duration. Furthermore, we find that the carrier-envelope phase dependence of the emission process is smaller than 0.1% for an 8 fs pulse but is steeply increasing with decreasing laser pulse duration.  相似文献   

16.
何唐梅  张靖仪 《中国物理快报》2007,24(12):3336-3339
We investigate the tunnelling radiation of charged and magnetized massive particles from a Banados-Teitelboim- Zanelli (BTZ) black hole by extending the Parikh-Wilczek tunnelling framework. In order to calculate the emission rate, we reconstruct the electromagnetic field tensor and the Lagrangia~n of the field corresponding to the source with electric and magnetic charges, and treat the charges as an equivalent electric charge for simplicity in the later calculation. The result supports Parikh-Wilczek's conclusion, that is, the Hawking thermal radiation actually deviates from perfect thermality and agrees with an underlying unitary theory.  相似文献   

17.
We report on field emission property from a single nanorod measured by using scanning tunnelling spectroscopy. It has been shown that field emission from nanorods of small band gap semiconductor is significantly increasing by doping. The current transport mechanism is explained using double barrier tunnel junction formalism. It is observed experimentally that the Fowler–Nordheim tunnelling mechanism is dominant and governs the transport mechanism. The transport properties of PbS nanostructures in the form of nanorod are investigated in terms of various conduction mechanism. The minimum voltage necessary for triggering Fowler–Nordheim tunnelling under the revised biased for intrinsic sample ~0.95 V and decreases to ~0.67 V for increase doping concentration up to 1.76 wt%.  相似文献   

18.
The continuous-wave high-efficiency laser emission of Nd:GdVO4 at the second-harmonic of 456 nm obtained by intracavity frequency doubling with an BiB3O6(BiBO) nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. About 3.8 W at 456 nm with M2 = 1.4 was obtained from a 5 mm-thick 0.4 at.% Nd:GdVO4 laser medium and a 12 mm-long BiBO nonlinear crystal in a Z-type cavity for 13.9 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.274. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

19.
We present the results on generating terahertz radiation in the plasma of an optical discharge arising in the atmosphere during the focusing of femtosecond laser radiation. Different generation schemes related to focusing of the optical radiation by spherical and axicon lenses, with a constant electric field imposed on the laser spark region, as well as with the use of bichromatic laser radiation, are studied. Directivity patterns and polarization distributions of the terahertz radiation are analyzed in detail for different generation techniques. Comparison with the experimental results obtained by other research groups is given. Possible nonlinear mechanisms of the terahertz radiation generation are discussed.  相似文献   

20.
A review about second harmonic generation using edge emitting diode lasers and nonlinear crystals to obtain laser radiation in the blue‐green spectral range is presented. Therefore, pump laser radiation with high brightness and narrow bandwidth is necessary. Thus, this review gives an overview of the advances made with distributed feedback and Bragg reflector lasers, tapered lasers and amplifiers as well as external cavity diode lasers and master oscillator power amplifier schemes to achieve high brilliance emission. Since periodically poled materials have enabled high second harmonic conversion efficiencies with low and moderate pump powers, the review is focused on frequency doubling using those materials. The most commonly used materials, their properties and limitations are discussed briefly. Single pass and resonant SHG setups with waveguide and bulk nonlinear crystals are discussed and an emphasis on building compact and integrated devices is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号