首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept. Imprinted monoliths were synthesized by use of a mixture of R-mandelic acid (template), 4-vinylpyridine, ethylene glycol dimethacrylate, and several metal ions as pivot between the template and functional monomer. A ternary mixture of dimethyl sulfoxide–dimethylformamide–[BMIM]BF4 containing metal ions was used as the porogenic system. Separation of the enantiomers of rac-mandelic acid was successfully achieved on the MIP thus obtained, with resolution of 1.87, whereas no enantiomer separation was observed on the imprinted monolithic column in the absence of metal ions. The effects of polymerization conditions, including the nature of the metal ion and the ratios of template to metal ions and template to functional monomer, on the chiral separation of mandelic acid were investigated. The results reveal that use of metal ions as a pivot, in combination with ionic liquid, is an effective method for preparation of a highly efficient MIP stationary phase for chiral separation.
Figure
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept  相似文献   

2.
三甲氧基苄啶分子印迹整体柱的制备及色谱性能   总被引:2,自引:0,他引:2  
选择甲基丙烯酸为功能单体\, 甲基丙烯酸乙二醇双酯为交联剂, 制备了三甲氧基苄啶分子印迹整体柱, 对整体柱材料的形貌进行了表征, 并且研究了TMP和5种磺胺类药物在分子印迹整体柱上的色谱行为.  相似文献   

3.
Histidine-tagged lentiviral vectors were separated from crude cell culture supernatant using labscale monolithic adsorbents by immobilized metal affinity chromatography. The capture capacity, concentration factor, purification factor, and elution efficiency of a supermacroporous cryogel monolith were evaluated against the BIA Separations convective interaction media (CIM) disc, which is a commercial macroporous monolith. The morphology of the polymeric cryogel material was characterised by scanning electron microscopy. Iminodiacetic acid was used as the metal chelating ligand in both monoliths and the chelating capacity for metal ions was found to be comparable. The CIM-IDA-Ni(2+) adsorbent had the greatest capture capacity (6.7 x 10(8) IU/ml of adsorbent), concentration factor (1.3-fold), and elution efficiency (69%). Advantages of the cryogel monoliths included rapid, low pressure processing as well low levels of protein and DNA in the final purified vector preparations.  相似文献   

4.
Synthesis and theoretical study of molecularly imprinted monoliths for HPLC   总被引:1,自引:0,他引:1  
Molecularly imprinted monoliths integrate the high permeability of monolithic materials and the high selectivity and affinity of molecularly imprinted polymers (MIP). Thus, in recent years, development of this novel MIP format in HPLC has expanded quickly, particularly use of organic materials. This review focuses on the principal aspects of good practice in polymerization, theoretical studies, and recent developments in molecularly imprinted monoliths. Some thoughts on perspectives of MIP monoliths are also expressed.  相似文献   

5.
The main objective of this study was to develop a new methodology for the preparation of a protein (antigen) that is a molecularly imprinted polymer (MIP, an artificial antibody) modified onto the surface of a silica skeleton in which the resulting stationary phase is thermosensitive. The silica monolithic skeleton with vinyl groups was synthesized in a stainless-steel column by using a mild one-step sol-gel process with two types of precursor: methyltrimethoxysilane (MTMS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS). Subsequently, three types of the thermosensitive protein MIP were anchored onto the surface of the silica skeleton to prepare the MIP monoliths, which were systematically investigated for back pressure and separation ability at different temperatures to establish good imprinting conditions. Under the optimized imprinting conditions, the chromatographic behavior of the thermosensitive MIP monolith exhibited strong retention ability for the lysozyme template (target antigen) in relation to the nonimprinting monolith (NIP monolith). The imprinting factor (IF) for lysozyme reached 3.48 at 20 °C. Moreover, this new type of artificial antibody displayed favorable binding characteristics for lysozyme over competitive proteins and was further evaluated to selectively separate lysozyme in a real sample by using an on-line method. The run-to-run and column-to-column repeatability measurements of the thermosensitive MIP monoliths were also satisfactory.  相似文献   

6.
To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition–fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.  相似文献   

7.
A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6 mm i.d. stainless steel column by a mild sol–gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of γ-methacryloxypropyltrimethoxysilane (γ-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template–monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.  相似文献   

8.
A new concept for the preparation of selective sorbents with high flow path properties is presented by embedding molecularly imprinted polymers (MIPs) into various macroporous gels (MGs). A MIP was first synthetized with 17beta-estradiol (E2) as template for the selective adsorption of this endocrine disrupter. The composite macroporous gel/MIP (MG/MIP) monoliths were then prepared at subzero temperatures. Complete recovery of E2 from a 2 microg/L aqueous solution was achieved using the polyvinyl alcohol (PVA) MG/MIP monoliths whereas only 49-74% was removed with non-imprinted polymers (when no template was used). The PVA MG/MIP monolith columns were operated at almost 10 times higher flow rate (50 mL/min) compared to the MIP columns with operation flow rate of 1-5 mL/min. The possibility for processing the particulate containing wastewater effluents at high flow rates with selectivity on E2 removal, as well as the easy preparation of the monoliths, make the macroporous MG/MIP systems attractive and robust sorbents for the clean up of water from endocrine disrupting trace contaminants.  相似文献   

9.
Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35 %, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC4D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of <15 % (averaged for several metal ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.  相似文献   

10.
Tetravalent metal phosphates (M=Zr, Ti, and Sn) were prepared and characterized by XRD, surface properties, and TG-DTA. The cation exchange and sorption behavior of these metal phosphates toward transition metal ions such as Cu(2+), Co(2+), and Ni(2+) have been studied comparatively as a function of temperature and concentration. The adsorption process was found to increases with increase in temperature and concentration. The selectivity order for alpha-titanium and alpha-tin phosphates is Cu(2+)>Co(2+)>Ni(2+), whereas for alpha-zirconium phosphate it is Cu(2+)>Ni(2+)>Co(2+). The ion exchange capacity of alpha-titanium phosphate is greater than those of other phosphates, which is explained on the basis of the surface behavior, disorderness of the system, degree of hydrolysis of incoming guest adsorbate metal ions, and structural steric hindrance of the exchangers during adsorption and sorption. The distribution coefficient, Gibbs free energy, enthalpy, and entropy values indicate that the ion-exchange processes are spontaneous.  相似文献   

11.
Molecularly imprinted polymer (MIP) monoliths with (S)‐ornidazole ((S)‐ONZ) as the template molecule have been designed and prepared by the simple thermal polymerization of methacrylic acid, 4‐vinylpyridine, and ethylene dimethacrylate in the presence of a binary porogenic mixture of toluene and dodecanol. The influences of polymerization mixture composition on the chiral recognition of ONZ have been evaluated, and the imprint effect in the optimized MIP monolith has been clearly demonstrated. The new monolithic stationary phase with optimized porous property and good selectivity was used for the chiral separation of ONZ by pressurized CEC. The pressurized CEC conditions were also optimized to obtain the good chiral separation. The enantiomers were rapidly separated within 9 min on the MIP‐based chiral stationary phase, whereas the chiral separation was not obtained on the nonimprinted polymer. Additionally, the proposed method has been successfully applied to the chiral separation of ONZ in tablet samples by injection of the crude sample. The cross‐selectivity for similar antiparasitic drug was investigated. The results indicated that the chiral separation of secnidazole could also be obtained on the optimized MIP monolith within 14 min.  相似文献   

12.
Molecularly imprinted monolithic columns for selective separation of enrofloxacin were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT)-mediated radical polymerization. Different ratios of initiation system were used in the synthesis. The structures of the monoliths were characterized to study the relationship between the synthetic conditions and morphology of the monolithic material. The separation performance of the monoliths was evaluated by liquid chromatography. Under optimized synthetic conditions, a monolithic molecularly imprinted polymer (MIP) with high selectivity and improved column efficiency was obtained. The research has shown that RAFT polymerization provides more adjustable conditions for making monolithic materials with different morphologies. The results also demonstrated that homogeneous macro-pore size distribution and large specific surface area are the key factors providing good separation ability and column efficiency for MIP monolithic structures.  相似文献   

13.
Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.  相似文献   

14.
Ou J  Zhang Z  Lin H  Dong J  Wu M  Zou H 《Electrophoresis》2012,33(11):1660-1668
Hydrophobic organic-inorganic hybrid monolithic columns were synthesized via thermally initiated free radical polymerization with the confines of 75 μm id capillary using a polyhedral oligomeric silsesquioxane (POSS) reagent containing eight or more methacrylate groups as the crosslinker. Three organic functional monomers, butyl methacrylate (BuMA), lauryl methacrylate (LMA) and methacrylic acid (MAA), were selected and copolymerized with the POSS in the presence of 1-propanol and 1,4-butanediol to prepare the poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths, respectively. The 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was copolymerized as ionizable monomer into the poly(POSS-co-BuMA) and poly(POSS-co-LMA) for the generation of EOF in capillary electrochromatography (CEC). A hybrid poly(POSS-co-LMA-co-MAA) monolith was also similarly prepared by copolymerizing ternary monomers of POSS, LMA, and MAA, and compared with poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths. The resulting four kinds of POSS-contained hybrid monoliths exhibited good permeability and mechanical stability. Their column efficiencies were evaluated by the separation of alkylbenzene homologues and polar compounds in CEC. The results indicated that the highest efficiencies of 194,100 and 102,100 theoretical plates per meter for thiourea and benzene were obtained on the poly(POSS-co-LMA-co-MAA) monolith. Additionally, the poly(POSS-co-LMA-co-MAA) monolith exhibited better selectivity for separation of polar compounds than those of other hybrid monoliths.  相似文献   

15.
Molecular crowding is a new approach to promoting molecular imprinting more efficiently. In this work, this concept was applied to the preparation of low cross-linked imprinted polymers in the presence of an immobilised template for stabilizing binding sites and improving molecular recognition. An imprinted monolithic column was synthesized using a mixture of 2,4-diamino-6-methyl-1,3,5-triazine (template), 2,4-diamino-6-(methacryloyloxy) ethyl-1,3,5-triazine (polymerisable template), methacrylic acid, ethylene glycol dimethacrylate, and polystyrene (molecular crowding agent). Some polymerization factors, such as template-monomer molar ratio, the composition of the porogen and crosslinking density, on the imprinting effect of resulting MIP monolith were systematically investigated. The results indicated that the imprinted monolithic columns prepared in the presence of molecular crowding agent retained affinity and specificity for template even when prepared with a level of cross-linker as low as 9%. Moreover, a stoichiometric displacement model for retention was successfully applied to evaluate the interaction between the solute and the stationary phase. Compared with the low cross-linked MIP prepared by conventional polymerization, the molecular crowding-based low cross-linked monolithic MIPs showed higher selectivity. The results suggested that molecular crowding is a powerful strategy to increase the effect of molecular imprinting at a low level of crosslinker.  相似文献   

16.
A 10 cm silica monolith has been modified with iminodiacetic acid (IDA) groups and characterised for its selectivity toward alkali, alkaline earth, and selected transition metal cations. Physical characterisation of the modified monolith found non-homogeneous modification along the length of the monolith, although sufficient capacity was achieved to facilitate significant retention of alkaline earth and transition/heavy metal ions over a range of eluent pH and ionic strength conditions. For alkaline earth and transition/heavy metal ions, selectivity of the 10 cm IDA monolith closely matched that seen with a 25 cm IDA modified silica gel particle packed column, although the separation of alkali metal ions was noticeably poorer on the monolithic column. Peak efficiencies for most metal ions were of a similar order for both column types, except for Zn(II), which showed significant peak broadening on the IDA monolithic column.  相似文献   

17.
A monolithic molecularly imprinted polymer (monolithic MIP) for sulfamethoxazole (SMO) was prepared by in situ polymerization method as the HPLC stationary phase. By optimizing the polymerization conditions, the monolithic MIP showed highly specific recognition for the template SMO over its three structurally related analogs. As shown by SEM and the pore size distribution profile, the resultant MIP monolith showed a main pore diameter of 594 nm and a large specific surface area of 124 m2 g−1, this allowed the mobile phase to flow through the column with low backpressure. Furthermore, the recognition abilities of the monolithic MIP in aqueous and organic media were studied. The results exhibited that the monolithic MIP possessed excellent recognition ability in aqueous media. Hydrophobic interactions, in addition to shape recognition, were the dominant effect for recognition in the mobile phase with high water content. Moreover, the binding sites and the dissociation constant were also determined by frontal chromatography as 122 μmol g−1 and 1.88 × 10−5 mol L−1, respectively, which demonstrated that the obtained SMO-MIP monolith had a high binding capacity and strong affinity ability to the template molecule. Furthermore, the resultant SMO-MIP monolith was used as HPLC column directly to determine the SMO contents in three kinds of pharmaceutical tablets with the optimized aqueous mobile phase.  相似文献   

18.
Zhang M  Liu YQ  Ye BC 《The Analyst》2012,137(3):601-607
A colorimetric assay has been developed for parallel detection of Cd(2+), Ni(2+) and Co(2+) utilizing peptide-modified gold nanoparticles (P-AuNPs) as a sensing element based on its unique surface plasmon resonance properties. The functional peptide ligand, CALNNDHHHHHH, was self-assembled on gold nanoparticles (AuNPs) to produce P-AuNPs probe. The P-AuNPs probe could be used to simultaneously detect and showed different responses to the three ions Cd(2+), Ni(2+) and Co(2+) in an aqueous solution based on the aggregation-induced color change of AuNPs. The method showed good selectivity for Cd(2+), Ni(2+) and Co(2+) over other metal ions, and detection limit as low as 0.05 μM Cd(2+), 0.3 μM Ni(2+) or 2 μM Co(2+). To simultaneously (or parallel) detect the three metal ions coexisting in a sample, EDTA and imidazole were applied to mask Co(2+) and Ni(2+) for detecting Cd(2+), glutathione and EDTA were applied to mask Cd(2+) and Co(2+) for detecting Ni(2+), and glutathione and imidazole were applied to mask Cd(2+) and Ni(2+) for detecting Co(2+). Finally, the simple and cost-effective probe could be successfully applied for simultaneously detecting Cd(2+), Ni(2+), and Co(2+) in river water. Because this novel P-AgNPs-based probe design offers many advantages, including simplicity of preparation and manipulation compared with other methods that employ specific strategies, the sensing system shows potential application in the developing region for monitoring water quality.  相似文献   

19.
Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis, or study of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments and applications of this method, with particular emphasis being given to work that has appeared in the last 5 years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths, and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns, and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal ions, and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized-metal-ion affinity chromatography, dye–ligand affinity chromatography, chiral separations, and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing, and biotechnology. Current trends and possible directions in AMC are also discussed.  相似文献   

20.
Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) is applied for the investigation of C(2)-ceramide complexes with transition metal ions. Ceramide plays an important role in the regulation of various signaling pathways leading to proliferation, differentiation or apoptotic cell death. The formation and fragmentation of doubly charged cluster ions as well as singly charged cluster ions of C(2)-ceramide with transition metal ions (Mn(2+), Fe(2+), Co(2+) and Ni(2+)) are studied by ESI-MS/MS in the positive mode. Tube lens offset voltage and concentrations of C(2)-ceramide and transition metals are optimized to determine the best conditions for generating doubly charged cluster ions. The fragmentation pathways of metal ion complexes with C(2)-ceramide and the compositions of these complexes are determined by collision induced dissociation (CID). All transition metal ions (Mn(2+), Fe(2+), Co(2+) and Ni(2+) except Cu(2+)) shows similar complexation with C(2) ceramide. The unique complexation behavior of copper(II) is responsible for the different geometry of the complexes and relatively lower affinity of ceramide to copper(II) than those to other transition metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号