首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The radiation environment inside a shielded volume is highly complex, consisting of both charged and neutral particles. Since the inception of human space flights, the charged particle component has received virtually all of the attention. There is however, a significant production of secondary neutrons, particularly from the aluminum structure in low earth orbiting spacecrafts. The interactions of galactic cosmic rays (GCR), and solar energetic particles with the earth's atmosphere produce a non-isotropic distribution of albedo neutrons. Inside any reasonable habitable module, the average radiation quality factor of neutrons is about 4-5 times larger than the corresponding average quality factor of charged particles. The measurement of neutrons and their energy spectra is a difficult problem due the intense sources of charged particles. This paper reviews the results of Shuttle flight experiments (made during both solar maximum and solar minimum) to measure the contribution of neutrons to the dose equivalent, as well as theoretical calculations to estimate the appropriate range of neutron energies that contribute most to the dose equivalent.  相似文献   

2.
Fission fragments and other charged particles leave tracks of permanent damage in most of the insulating solids. Damage track detectors are useful for personal dosimeters and for flux/dose determination of high-energy particles from accelerators or cosmic rays. A detector that has its principal response at nucleon energy above 50 MeV is provided by the fission of Bi-209. Neutrons produce the largest percentage of hadron dose in most high-energy radiation fields. In these fields, the neutron spectrum is typically formed by low-energy neutrons (evaporation spectrum) and high-energy neutrons (knock-on spectrum). We used Bi-fission detectors to measure neutron peak fluence and compared the result with the calculated value of neutron peak fluence. For the exposure to 100 MeV we have used the iThemba Facility in South Africa.  相似文献   

3.
在碳离子放射治疗中,碳离子束在剂量配送过程中会与束流输运线相互作用,形成以中子辐射为主的外辐射场.由于中子是高LET射线,具有较高的相对生物学效应,减少碳离子放疗中产生的次级中子有助于降低放疗后正常组织并发症几率及二次肿瘤风险.利用蒙特卡罗方法对保守情况(能量为400 MeV/u,多叶光栅完全闭合)下碳离子治疗被动式束...  相似文献   

4.
The epithermal neutron beam of the Tsing Hua Open-pool Reactor (THOR) was constructed for the study of boron neutron capture therapy (BNCT). The THOR epithermal neutron beam was mainly composed of thermal neutrons, fast neutrons, and photons. For fast neutrons and photons, the absorbed dose and the relative biological effectiveness (RBE) were used to characterize radiation dose and radiation quality. The short-ranged alpha particles and lithium ions produced from 10B(n,α)7Li reactions in the BNCT required cellular- and micro-dosimetry characterizations. Due to the non-uniform microdistribution of boron in cells, these characterizations should depend on the source–target geometry. In this case, the geometry-dependent specific cellular dose and lineal energy could be used to describe radiation dose and radiation quality. In the present work, cellular- and micro-dosimetry were studied for the THOR epithermal neutron beam. The specific cellular dose and lineal energy were calculated for thermal neutron-induced α-particles and 7Li-ions with different source–target geometry and various cell sizes. Applying the linear energy dependent-biological weighting function, the geometry-dependent RBE of thermal neutron-induced heavy particles was determined. Finally, the effective RBE of the THOR epithermal neutron beam was estimated for tumors and normal tissues of specified 10B concentrations. This effective RBE should be multiplied by the total absorbed dose to determine the corresponding biological dose required in the treatment planning.  相似文献   

5.
The interaction of high-energy space radiation with spacecraft materials generates a host of secondary particles, some, such as neutrons, are more biologically damaging and penetrating than the original primary particles. Before committing astronauts to long term exposure in such high radiation environments, a quantitative understanding of the exposure and estimates of the associated risks are required. Energetic neutrons are traditionally difficult to measure due to their neutral charge. Measurement methods have been limited by mass and weight requirements in space to nuclear emulsion, activation foils, a limited number of Bonner spheres, and TEPCs. Such measurements have had limited success in quantifying the neutron component relative to the charged components. We will show that a combination of computational models and experimental measurements can be used as a quantitative tool to evaluate the radiation environment within the Shuttle, including neutrons. Comparisons with space measurements are made with special emphasis on neutron sensitive and insensitive devices.  相似文献   

6.
Secondary radiation exposure of patients undergoing radiation therapy with light ions is of great concern due to possible tissue damage and risk of induction of secondary cancers.Secondary particles such as neutrons, protons and heavier ions are produced when the primary ions interact through nuclear inelastic reactions with the beam-line components, and with the tissues of the patient.Evaluations of secondary doses delivered to an anthropomorphic male phantom under prostate irradiation with 1H and 12C ion beams with energies 172 MeV and 330 MeV/u, respectively, have been performed with the Monte Carlo code SHIELD-HIT.Fluences of secondary particles with atomic mass A = 1–7 and energies up to 200–600 MeV/u are observed in organs even at larger distances (40–50 cm) from the irradiated volume. The secondary absorbed doses in selected organs are discussed taking into account the dose contribution from secondary neutrons, and the contribution from charged fragments that are not the products of neutron interactions. For 12C ion irradiation, a substantial contribution to the absorbed organ dose is due to charged fragments. This contribution decreases from 81% in the organs close to the irradiated volume to 35–40% in the organs at larger distances.  相似文献   

7.
Active detectors based on Si semiconductors are being developed for individual radiation protection purposes in mixed neutron and photon fields. These devices are constructed as combined converter semiconductor detectors. Incident neutrons interact with the converter or detector nuclei and produce charged particles that can deposit energy in the semiconductor and cause a signal. The aim of this work is the determination of the response of such detectors to incident neutrons by experiment and by computation. The computer model consists of the neutron interaction simulation and the calculation of the ion transport. An analysis of measured and computed pulse height distributions for 5 MeV incident neutrons is presented as well as a comparison.  相似文献   

8.
Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes.Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.  相似文献   

9.
Undesired radiation exposure in normal tissues around a treatment volume in proton and carbon-ion radiotherapies is less than that in the conventional radiotherapies due to physical and/or biological properties of charged particles. Such exposure is always considered in a treatment planning, however, undesired exposure in normal tissues far from the treatment volume cannot be considered in the treatment planning, because it is caused by secondary radiation as well as leakage primary particles. Though this exposure is considerably lower than that near the treatment volume, it may be not negligible to estimate the risk of secondary cancer especially for the young patients. In particular, the assessment of the secondary neutrons that inevitably produced within the patient and beam line devices is very important due to the potency of their biological effect. The distributions of the absorbed dose and the biological effectiveness in phantom/patient are required to assess the risk, and Monte Carlo calculation plays a key role due to a difficulty of the measurements. In this study, comparison of measured and calculated in-air neutrons at the patient position in the Heavy Ion Medical Accelerator in Chiba (HIMAC) treatment room are performed to verify the accuracy of the Monte Carlo code, PHITS. Our calculations underestimated epithermal neutrons measured by Bonner sphere system. This discrepancy may be caused by an insufficiency of the calculational geometry modeling, consequently an underestimation of neutrons scattered and moderated by the beam line devices. However, it is unlikely that the underestimation significantly contribute to the dose estimation in phantom. On the other hand, the calculation reproduced the measured ambient dose equivalents well because they were dominated by neutrons above 0.1 MeV. This result showed that the PHITS code has a potential ability to evaluate the neutron exposure of the patient in passive carbon-ion radiotherapy.  相似文献   

10.
张颂  魏彪  刘易鑫  毛本将  钱易坤  黄宇晨  冯鹏 《强激光与粒子束》2020,32(5):056001-1-056001-7
研究用于校准场所中子剂量监测仪表的241Am-Be中子参考辐射场计量特性。采用蒙特卡罗方法模拟了空气自由中子参考辐射(FRNR),GB/T 14055规定的最小尺寸中子参考辐射(SRNR)和实际中子参考辐射(ARNR)中不同检验点处中子周围剂量当量率、散射中子占比和能谱分布特征。研究结果表明,空气对FRNR中的剂量率和能谱分布影响小,近似为理想中子参考辐射;采用5%含硼聚乙烯作屏蔽的最小尺寸SRNR可减少热中子,降低散射中子占比,影锥法不适用于小尺寸中子参考辐射中对散射中子的修正;ARNR中的散射中子更少、占比更低,影锥法所得散射中子占比与理论值基本一致。  相似文献   

11.
In most high energy radiation fields, such as those encountered around accelerators or cosmic rays in the atmosphere, neutrons produce the largest percentage of the hadron dose. In these radiation fields, the neutron spectrum is typically formed by low energy neutrons (evaporation spectrum) and high energy neutrons (knock-on spectrum).

Neutron spectrometry and dosimetry are better understood for low energy neutrons (i.e. neutrons with energy below 20 MeV) than for those of higher energies. This paper reports the study of different detectors based on the registration of fission fragments of different heavy elements (namely bismuth, gold and tantalum), which have their principal response to high energy neutrons.  相似文献   


12.
Semiconductor devices based on a Si-detector are frequently used for charged particle's detection; one application being in the investigation of cosmic radiation fields. From the spectra of energy deposition events in such devices, the total energy deposited by the radiation in silicon can be derived. This contribution presents the results of studies concerning the response of this type of detector to fast neutrons. First, the spectrum of energy deposition was established in fast neutron radiation fields with average energies from 0.5 to 50 MeV. It was found that these spectra vary significantly with the neutron energy. The comparison with the spectra registered in photon beams permitted an estimation of the part of energy deposited that could be attributed to neutrons. It was found that this part increases rapidly with neutron energy. The possibilities to use this type of detector for neutron detection and dosimetry for radiation protection are analysed and discussed.  相似文献   

13.
主要关于上海同步辐射装置(SSRF)储存环电子引发产生的韧致辐射和中子辐射的研究. 中子和光子经多种组合材 料(厚度在5cm~115cm之间)屏蔽后的剂量特征由蒙特卡罗代码MCNP和EGSnrc估算得到; 蒙特卡罗计算表明, 单一的材料如铅, 铁和聚乙烯对高能中子是无效的生物屏蔽材料, 而组合材料如铅或者铁加聚乙烯和铅或者铁加混凝土被认为是屏蔽高能中子很好的组合材料. 铅铁等高Z材料加点包含有氢的低Z材料如聚乙烯是同时屏蔽高能中子和韧致辐射的一种比较好的组合材料选择.  相似文献   

14.
As part of a study funded by NASA MSFC to assess thecontribution of secondary particles in producing radiation damage to optoelectronics devices located on the International Space Station (IS), Monte Carlo calculations have been made to predict secondary spectra vs. shielding inside ISS modules and in electronics boxes attached on the truss (Armstrong and Colborn, 1998). The calculations take into account secondary neutron, proton, and charged pion production from the ambient galactic cosmic-ray (GCR) proton, trapped proton, and neutron albedo environments. Comparisons of the predicted neutron spectra with measurments made on the Mir space station and other spacecraft have also been made (Armstrong and Colborn, 1998). In this paper, some initial results from folding the predicted neutron spectrum inside ISS modules from Armstrong and Colborn (1998) with several types of radiation effects response functions related to electronics damage and astronaut-dose are given. These results provide an estimate of the practical importance of neutrons compared to protons in assessing radiation effects for the ISS. Also, the important neutron energy ranges for producing these effects have been estimated, which provides guidance for onboard neutron measurement requirements.  相似文献   

15.
The motion of neutrons in magnetic traps is considered for various cases of neutron polarization. The results of implementing such traps in practice and special features of experiments studying magnetic neutron storage are discussed. The problem of neutron losses during injection via magnetic valves can be solved by conjoining a magnetic trap with a converter of cold neutrons into ultracold ones or with a source of ultracold neutrons. Prospects for expanding neutron-storage experiments by invoking a correlation analysis of neutron decay and by using the transport properties of charged particles in a nonuniform magnetic field are analyzed. In such an investigation, the recording of the storage time of neutrons proper can be supplemented with the detection of decay protons and electrons and with a parallel measurement of the asymmetries of proton and electron emission with respect to the magnetic field. A set of relative measurements permits improving the accuracy of an experimental determination of the neutron lifetime and combining this determination with the determination of correlation coefficients. On this basis, it is possible to find directly the ratio of the weak-interaction constants and the constants themselves. The application of the most advanced reactor and accelerator technologies to subcritical electric nuclear devices optimized for generating cold and ultracold neutrons, along with the use of solid deuterium and superfluid helium, creates preconditions for developing a neutron plant and for launching neutron studies at accelerators. Thus, the work that has been done as a development of V.V. Vladimirsky's proposals on magnetic neutron storage is analyzed, and the potential of a further use of ultracold neutrons and magnetic devices for deploying a full-scale precision experiment to study the beta decay of polarized neutrons is demonstrated.  相似文献   

16.
A technique to separate out the dose, and lineal energy spectra of neutrons and charged particles is described. It is based on using two proportional counters, one with a wall, and the other with similar characteristics but wall made from a non-hydrogen containing material. Results of a calibration in a neutron field are also shown.  相似文献   

17.
As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10–100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.  相似文献   

18.
An experimental investigation of the reaction of core pickup from 6He and 11Li two-neutronhalo nuclei is proposed. In such experiments, neutron–neutron correlations in a halo nucleus will be assessed on the basis of the energy of a neutron–neutron quasibound state. A detailed kinematical simulation of the reaction 6He + 2H → 6Li + (nn) →6 Li + n + n is performed. It is shown that the energy of the quasibound state in question can determined from the shape of the energy spectrum of neutrons originating from the breakup of this state. In the proposed exclusive experiment, a beam of 6He (11Li) nuclei with an energy of about 5 to 10 MeV per nucleon interacts with a deuterated-polyethylene target. This will permit detecting charged particles (6Li and 11Be) and a neutron. On the basis of determining the energy of the neutron–neutron quasibound state, it will become possible to estimate the effective attraction between the valence neutrons in the field of the third particle (core).  相似文献   

19.
In assessing the radiation risk of personnel exposed to cosmic radiation fields as it pertains to radiological damage during travel in civilian aircrafts, it is particularly important to know the relative biological effectiveness (RBE) for high energy neutrons. It has been the subject of numerous investigations in recent years using different neutron energies and cytogenetic examinations. Variations in the radiosensitivity of white blood cells for different individuals are likely to influence the estimate of the relative biological effectiveness for high energy neutrons. This as such observations have been noted in the response of different cancer cell lines with varying inherent sensitivities. In this work the radiosensitivities of T-lymphocytes of different individuals to the p(66)/Be neutron beam at iThemba LABS were measured using micronuclei formations and compared to that noted following exposure to 60Co γ-rays. The principle objective of this investigation was to establish if a relationship between neutron RBE and variation in biological response to 60Co γ-rays for lymphocytes from different individuals could be determined. Peripheral blood samples were collected from four healthy donors and isolated lymphocytes were exposed to different doses of 60Co γ-rays (1–5 Gy) and p(66)/Be neutrons (0.5–2.5 Gy). One sample per donor was not exposed to radiation and served as a control. Lymphocytes were stimulated using PHA and cultured to induce micronuclei in cytokinesis-blocked cells. Micronuclei yields were numerated using fluorescent microscopy. Radiosensitivities and RBE values were calculated from the fitted parameters describing the micronuclei frequency dose response data. Dissimilar dose response curves for different donors were observed reflecting varying inherent sensitivities to both neutron and gamma radiation. A clear reduction in the dose limiting RBEM is noted for donors with lymphocytes more sensitive to γ-rays (p = 0.032, R2 = 0.94). Unlike observations made with different cancer cell lines exposed to the same clinical neutron beam, the variations in neutron RBE observed in T-lymphocytes of different individuals is related to the cellular radioresistance to photons.  相似文献   

20.
The mechanisms and the features of the main types of nuclear ternary fission (that is, true ternary fission, in which a third particle is emitted before the rupture of the fissioning nucleus into fragments, and delayed ternary fission, in which a third particle is emitted from fission fragments going apart) are investigated within quantum-mechanical fission theory. The features of T-odd asymmetry in true ternary nuclear fission induced by cold polarized neutrons are investigated for the cases where alpha particles, prescission neutrons, and photons appear as third particles emitted by fissioning nuclei, the Coriolis interaction of the spin of the polarized fissioning nucleus with the spin of the third particle and the interference between the fission amplitudes for neutron resonances excited in the fissioning nucleus in the case of projectile-neutron capture being taken into account. For the cases where third particles emitted by fission fragments are evaporated neutrons or photons, T-odd asymmetries in delayed ternary nuclear fission induced by cold polarized neutrons are analyzed with allowance for the mechanism of pumping of large fission-fragment spins oriented orthogonally to the fragment-emission direction and with allowance for the interference between the fission amplitudes for neutron resonances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号