首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel supramolecular framework, catena‐poly[[[aqua(2‐phenylquinoline‐4‐carboxylato‐κO)silver(I)]‐μ‐4,4′‐bipyridine‐κ2N:N′] dihydrate], {[Ag(C16H10NO2)(C10H8N2)(H2O)]·2H2O}n, has been synthesized and structurally characterized. The AgI centres are four‐coordinated and bridged by 4,4′‐bipyridine (4,4′‐bipy) ligands to form a one‐dimensional Ag–bipy chain. The Ag–bipy chains are further linked together by intermolecular O—H...O and O—H...N hydrogen‐bonding interactions between adjacent chains, resulting in a three‐dimensional framework.  相似文献   

2.
In the title complex, [Cu2(C10H2O8)(C10H8N2)2]n, the CuII cation has a four‐coordinated environment, completed by two carboxyl O atoms belonging to two 1,2,4,5‐benzene­tetra­carboxyl­ate anions (TCB4−) and two N atoms from one 2,2′‐bi­pyridine (2,2′‐bipy) ligand, forming a distorted square‐planar geometry. The [Cu(2,2′‐bipy)]2+ moieties are bridged by TCB4− anions, which lie about inversion centres, forming an infinite one‐dimensional coordination polymer with a double‐chain structure along the a axis. A two‐dimensional network structure is formed via a face‐to‐face π–π interaction between the 2,2′‐bipy rings belonging to two adjacent double chains, at a distance of approximately 3.56 Å.  相似文献   

3.
The title organometallic compound, fac‐tri­carbonyl‐2κ3C‐(4,4′‐di­methyl‐2,2′‐bi­pyridine)‐2κ2N,N′‐tri­phenyl‐1κ3C1‐tin(II)­rhenium(I)(Sn—Re), [ReSn(C6H5)3(C12H12N2)(CO)3], con­tains three unique π–π stacking interactions. The result is an infinite chain of uninterrupted alternating intra‐ and intermolecular offset π–π stacking interactions throughout the crystal lattice. This extended π–π stacking arrangement, and an additional isolated intramolecular π–π interaction between the remaining 4,4′‐di­methyl‐2,2′‐bi­pyridine ring and a second phenyl group, impose geometric constraints on the Re and Sn atoms, yielding distorted octahedral and tetrahedral coordinations, respectively, for the metal centers.  相似文献   

4.
Reaction of AgNO3 and 2,2′‐bipyridine (bipy) under ultrasonic treatment gave the title compound, [Ag(C10H8N2)(NH3)]NO3. The crystal structure consists of dimers formed by two symmetry‐related AgI–bipy monomers connected through intra‐dimer π–π stacking and ligand‐unsupported Ag...Ag interactions. A crystallographic C2 axis passes through the mid‐point of and is perpendicular to the Ag...Agi(−x + 1, y, −z + ) axis. In addition, each AgI cation is coordinated by one chelating bipy ligand and one ammine ligand, giving a trigonal coordination environment capped by the symmetry‐equivalent Ag atom. Molecules are assembled by Ag...Ag, π–π, hydrogen‐bond (N—H...O and C—H...O) and weak Ag...π interactions into a three‐dimensional framework. Comparing the products synthesized under different mechanical treatments, we found that reaction conditions have a significant influence on the resulting structures. The luminescence properties of the title compound are also discussed.  相似文献   

5.
The title compound, [Cu(ClO4)(C5H6N2)2(C12H12N2)]ClO4, was prepared by in situ partial ligand substitution between 3‐amino­pyridine and 4,4′‐dimethyl‐2,2′‐bipyridine at room temperature. The central copper(II) ion is five‐coordinated by one bidentate 4,4′‐dimethyl‐2,2′‐bipyridine mol­ecule, two monodentate pyridine‐coordinated 3‐amino­pyridine mol­ecules and one apical O atom from the perchlorate counter‐ion. Inter­molecular N—H⋯O and C—H⋯O hydrogen‐bonding inter­actions form a hydrogen‐bond‐sustained network.  相似文献   

6.
Dichloro­(4,4′‐dipentyl‐2,2′‐bipyridine‐κ2N,N′)platinum(II), [PtCl2(C20H28N2)], adopts a discrete π–π stacking structure, where the alkyl chains are located in a random manner. In contrast, dichloro­(4,4′‐diheptyl‐2,2′‐bipyridine‐κ2N,N′)platinum(II), [PtCl2(C24H36N2)], forms a layer structure comprised of alkyl chain layers and paired coordination sites, as observed for analogous complexes with longer alkyl chains.  相似文献   

7.
通过水热合成技术,一个新颖的基于Zn配合物修饰的Keggin型钴钨酸的有机-无机杂化化合物:[Zn(2,2’-bipy)3]3{[Zn(2,2’-bipy)2(H2O)]2 [HCoW12O40] 2 }.H2O已经被合成,化合物通过红外光谱、热重分析和单晶X-射线衍射进行了表征。单晶X-射线衍射的结果显示标题化合物是由一个单支撑的{[Zn(2,2’-bipy)2(H2O)]2 [HCoW12O40] 2}6-多阴离子,三个[Zn(2,2’-bipy)3]2+阳离子和一个水分子构成。有趣的是[Zn(1)(2,2’-bipy)3]2+阳离子通过氢键连接在一起形成螺旋链。另外标题化合物在空气中是稳定的,并且在室温下显示了强的荧光。  相似文献   

8.
A series of trans‐(Cl)‐[Ru(L)(CO)2Cl2]‐type complexes, in which the ligands L are 2,2′‐bipyridyl derivatives with amide groups at the 5,5′‐positions, are synthesized. The C‐connected amide group bound to the bipyridyl ligand through the carbonyl carbon atom is twisted with respect to the bipyridyl plane, whereas the N‐connected amide group is in the plane. DFT calculations reveal that the twisted structure of the C‐connected amide group raises the level of the LUMO, which results in a negative shift of the first reduction potential (Ep) of the ruthenium complex. The catalytic abilities for CO2 reduction are evaluated in photoreactions (λ>400 nm) with the ruthenium complexes (the catalyst), [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine; the photosensitizer), and 1‐benzyl‐1,4‐dihydronicotinamide (the electron donor) in CO2‐saturated N,N‐dimethylacetamide/water. The logarithm of the turnover frequency increases by shifting Ep a negative value until it reaches the reduction potential of the photosensitizer.  相似文献   

9.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

10.
The title ionic compound, [Ni(C12H12N2)(H2O)4]SO4·H2O, is composed of an NiII cation coordinated by a chelating 4,4′‐dimethyl‐2,2′‐bipyridine ligand via its two N atoms [mean Ni—N = 2.056 (2) Å] and by four aqua ligands [mean Ni—O = 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule. Even though the individual constituents are rather featureless, they generate an extremely complex supramolecular structure consisting of a central hydrogen‐bonded two‐dimensional hydrophilic nucleus made up of complex cations, sulfate anions and coordinated and solvent water molecules, with pendant hydrophobic 4,4′‐dimethyl‐2,2′‐bipyridine ligands which interact laterally with their neighbours viaπ–π interactions. The structure is compared with closely related analogues in the literature.  相似文献   

11.
The PbII cation in the title compound, [Pb2(C14H4N2O8)]n, is seven‐coordinated by one N atom and six O atoms from four 4,4′‐bipyridine‐2,2′,6,6′‐tetracarboxylate (BPTCA4−) ligands. The geometric centre of the BPTCA4− anion lies on an inversion centre. Each pyridine‐2,6‐dicarboxylate moiety of the BPTCA4− ligand links four PbII cations via its pyridyl N atom and two carboxylate groups to form two‐dimensional sheets. The centrosymmetric BPTCA4− ligand then acts as a linker between the sheets, which results in a three‐dimensional metal–organic framework.  相似文献   

12.
The photochemistry of fac‐[Re(bpy)(CO)3Cl] ( 1 a ; bpy=2,2′‐bipyridine) initiated by irradiation using <330 nm light has been investigated. Isomerization proceeded in THF to give the corresponding mer‐isomer 1 b . However, in the presence of a small amount of MeCN, the main product was the CO‐ligand‐substituted complex (OC‐6‐24)‐[Re(bpy)(CO)2Cl(MeCN)] ( 2 c ; bpy=2,2′‐bipyridine). In MeCN, two isomers, 2 c and its (OC‐6‐34) form ( 2 a ), were produced. Only 2 c thermally isomerized to produce the (OC‐6‐44) form 2 b . A detailed investigation led to the conclusion that both 1 b and 2 c are produced by a dissociative mechanism, whereas 2 a forms by an associative mechanism. A comparison of the ultrafast transient UV‐visible absorption, emission, and IR spectra of 1 a acquired by excitation using higher‐energy light (e.g., 270 nm) and lower‐energy light (e.g., 400 nm) gave detailed information about the excited states, intermediates, and kinetics of the photochemical reactions and photophysical processes of 1 a . Irradiation of 1 a using the higher‐energy light resulted in the generation of the higher singlet excited state with τ≤25 fs, from which intersystem crossing proceeded to give the higher triplet state (3HES( 1 )). In THF, 3HES( 1 ) was competitively converted to both the triplet ligand field (3LF) and metal‐to‐ligand charge transfer (3M LCT) with lifetimes of 200 fs, in which the former is a reactive state that converts to [Re(bpy)(CO)2Cl(thf)]+ ( 1 c ) within 10 ps by means of a dissociative mechanism. Re‐coordination of CO to 1 c gives both 1 a and 1 b . In MeCN, irradiation of 1 a by using high‐energy light gives the coordinatively unsaturated complex, which rapidly converted to 2 c . A seven‐coordinate complex is also produced within several hundred femtoseconds, which is converted to 2 a within several hundred picoseconds.  相似文献   

13.
In the crystal structure of the title complex, [Ni2(C10H20N4O2)(C12H12N2)2](ClO4)2 or [Ni(dmaeoxd)Ni(dmbp)2](ClO4)2 {H2dmaeoxd is N,N′‐bis­[2‐(dimethyl­amino)ethyl]oxamide and dmbp is 4,4′‐dimethyl‐2,2′‐bipyridine}, the deprotonated dmaeoxd2− ligand is in a cis conformation and bridges two NiII atoms, one of which is located in a slightly distorted square‐planar environment, while the other is in an irregular octa­hedral environment. The cation is located on a twofold symmetry axis running through both Ni atoms. The dmaeoxd2− ligands inter­act with each other via C—H⋯O hydrogen bonds and π–π inter­actions, which results in an extended chain along the c axis.  相似文献   

14.
The title compound, bis­[tris­(2,2′‐bipyridine)iron(II)] tetra­aqua­tetra‐μ4‐oxo‐penta­cosa‐μ2‐oxo‐undeca­oxo­iron(III)sodium(I)­dodeca­tungsten(VI) dihydrate, [Fe(C10H8N2)3]2[NaFeW12O40(H2O)4]·2H2O, consists of a dodeca­tungstoferrate(III) framework grafted on to an [Na(H2O)4]+ cation, two complex [Fe(2,2′‐bipy)3]2+ cations (2,2′‐bipy is 2,2′‐bipyridine) and two uncoordinated water mol­ecules per formula unit.  相似文献   

15.
Crystal structures are reported for four (2,2′‐bipyridyl)(ferrocenyl)boronium derivatives, namely (2,2′‐bipyridyl)(ethenyl)(ferrocenyl)boronium hexafluoridophosphate, [Fe(C5H5)(C17H15BN2)]PF6, (Ib), (2,2′‐bipyridyl)(tert‐butylamino)(ferrocenyl)boronium bromide, [Fe(C5H5)(C19H22BN3)]Br, (IIa), (2,2′‐bipyridyl)(ferrocenyl)(4‐methoxyphenylamino)boronium hexafluoridophosphate acetonitrile hemisolvate, [Fe(C5H5)(C22H20BN3O)]PF6·0.5CH3CN, (IIIb), and 1,1′‐bis[(2,2′‐bipyridyl)(cyanomethyl)boronium]ferrocene bis(hexafluoridophosphate), [Fe(C17H14BN3)2](PF6)2, (IVb). The asymmetric unit of (IIIb) contains two independent cations with very similar conformations. The B atom has a distorted tetrahedral coordination in all four structures. The cyclopentadienyl rings of (Ib), (IIa) and (IIIb) are approximately eclipsed, while a bisecting conformation is found for (IVb). The N—H groups of (IIa) and (IIIb) are shielded by the ferrocenyl and tert‐butyl or phenyl groups and are therefore not involved in hydrogen bonding. The B—N(amine) bond lengths are shortened by delocalization of π‐electrons. In the cations with an amine substituent at boron, the B—N(bipyridyl) bonds are 0.035 (3) Å longer than in the cations with a methylene C atom bonded to boron. A similar lengthening of the B—N(bipyridyl) bonds is found in a survey of related cations with an oxy group attached to the B atom.  相似文献   

16.
The reaction of 2,2′:6′,2′′‐terpyridine (terpy) with CuCl2 in the presence of sodium sulfite led to the synthesis of the ionic complex aquachlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II) chlorido(dithionato‐κO)(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)cuprate(II) dihydrate, [CuCl(C15H11N3)(H2O)][CuCl(S2O6)(C15H11N3)]·2H2O, (I), and the in situ synthesis of the S2O62− dianion. Compound (I) is composed of a [CuCl(terpy)(H2O)]+ cation, a [Cu(S2O6)(terpy)] anion and two solvent water molecules. Thermogravimetric analysis indicated the loss of two water molecules at ca 363 K, and at 433 K the weight loss indicated a total loss of 2.5 water molecules. The crystal structure analysis of the resulting pale‐green dried crystals, μ‐dithionato‐κ2O:O′‐bis[chlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II)] monohydrate, [Cu2Cl2(S2O6)(C15H11N3)2]·H2O, (II), revealed a net loss of 1.5 water molecules and the formation of a binuclear complex with two [CuCl(terpy)]+ cations bridged by a dithionate dianion. The crystal‐to‐crystal transformation involved an effective reduction in the unit‐cell volume of ca 7.6%. In (I), the ions are linked by O—H...O hydrogen bonds involving the coordinated and solvent water molecules and O atoms of the dithionate unit, to form ribbon‐like polymer chains propagating in [100]. These chains are linked by Cu...Cl interactions [3.2626 (7) Å in the cation and 3.3492 (7) Å in the anion] centred about inversion centres, to form two‐dimensional networks lying in and parallel to (01). In (II), symmetry‐related molecules are linked by O—H...O hydrogen bonds involving the partially occupied disordered water molecule and an O atom of the bridging thiosulfite anion, to form ribbon‐like polymer chains propagating in [100]. These chains are also linked by Cu...Cl interactions [3.3765 (12) Å] centred about inversion centres to form similar two‐dimensional networks to (I) lying in and parallel to (02), crosslinked into three dimensions by C—H...O=S and C—H...O(water) interactions.  相似文献   

17.
Two special manganese complexes [Mn(II)(acac?)2(4,4′‐bipy)]n (bipy=4,4′‐bipyridine) (complex 1 ) and [Mn(III)(acac?)3]·4CO(NH2)2 (acacH=acetylacetone) (complex 2 ) were synthesized in the same strategy by solvothermal method. Single crystal X‐ray diffraction revealed the complex 1 consists of one‐dimensional infinite coordination chain, with the manganese centers bridged by 4,4′‐bipy. And free carbamides of complex 2 connect with each other through the hydrogen bonds to form a 14‐membered carbamide ring and a zig‐zag plane. Both enantiomers of Mn(III)(acac?)3 exist in the structure, forming a racemate. Furthermore, these enantiomers and those zig‐zag planes are linked with hydrogen bonds to form an unique spatial network.  相似文献   

18.
Mononuclear palladium‐hydroxo complexes of the type [Pd(N–N)(C6F5)(OH)][(N–N) = 2,2′‐bipyridine (bipy), 4,4′‐dimethyl‐2,2′‐bipyridine (Me2bipy), 1,10‐phenantroline (phen) or N,N,N′,N′‐tetramethylethylenediamine (tmeda) react with phenols ArOH in tetrahydrofuran giving the corresponding aryloxo complexes [Pd(N–N)(C6F5)(OAr)]. Elemental analyses and spectroscopic (IR, 1H and 19F) methods have been used to characterize the new complexes. The X‐ray crystal structure of [Pd(tmeda)(C6F5)(OC6H4NO2p)] has been determined. In the crystal packing the planes defined by two C6H4 rings show a parallel orientation. There are also intermolecular C–H···F and C‐H···O hydrogen bonds.  相似文献   

19.
Two manganese(II) bipyridine carboxylate complexes, [(bipy)2MnII(μ‐C2H5CO2)2MnII(bipy)2}2](ClO4)2 ( 1 ), and [MnII(ClCH2CO2)(H2O)(bipy)2]ClO4 · H2O ( 2 ) were prepared. 1 crystallizes in the triclinic space group P 1 with a = 8.604(3), b = 12.062(3), c = 13.471(3) Å, α = 112.47(2), β = 93.86(2), γ = 92.87(3)°, V = 1211.1(6) Å3 and Z = 1. In the dimeric, cationic complex with a crystallographic center of symmetry two 2,2′‐bipyridine molecules chelate each manganese atom. These two metal fragments are then bridged by two propionato groups in a syn‐anti conformation. The Mn…Mn distance is 4.653 Å. 2 crystallizes in the monoclinic space group P21/c with a = 9.042(1), b = 13.891(1), c = 21.022(3) Å, β = 102.00(1)°, V = 2569.3(5) Å3 and Z = 4. 2  is a monomeric cationic complex in which two bipyridine ligands chelate the manganese atom in a cis fashion. A chloroacetato and an aqua ligand complete the six‐coordination. Only in 2 is the intermolecular packing controlled by weak π‐stacking besides C–H…π contacts between the bipyridine ligands.  相似文献   

20.
catena‐Poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] thio­sulfate dihydrate], {[Ni(C10H8N2)(H2O)4]S2O3·2H2O}n, (I), and catena‐poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] sulfate methanol solvate monohydrate], {[Ni(C10H8N2)(H2O)4]SO4·CH4O·H2O}n, (II), are built up of {[Ni(4,4′‐bipy)(H2O)4]2+}n chains (4,4′‐bipy is 4,4′‐bipyridine) inter­woven in an unusual P31 fashion. Voids are filled by the corresponding counter‐anions and solvate mol­ecules, defining a complex three‐dimensional network surrounding them. In both structures, the cationic chains evolve around a set of twofold axes passing through the NiII ions and bis­ecting the aromatic amines through their N (and their opposite C) atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号