首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional rotational temperature measurement was performed in a stable combustion flame of premixed butane and oxygen using multiline laser induced fluorescence (LIF) of nitric oxide molecules. Multiple rotational absorption lines of A2+Π;X2II(0,0) Q1 and Q2 lines were excited by laser light around 226 nm, and the LIF signal was observed by an image-intensified digital camera. Temperature was determined through least squares fitting correlation between LIF intensity and excitation rotational quantum number for the Boltzmann distribution function. The measured LIF intensity was approximated by the Boltzmann distribution with good accuracy, and the temperature obtained was between 500 K and 1800 K for the test flame. The measuring error of the temperature was evaluated and found to be 80 K, which corresponded to 8% of the measured fluorescence intensity. The two-line LIF scheme was evaluated by different pairs of excitation lines (Q1(31.5)/Q1(16.5) and Q1(18.5)/Q1(16.5)) for comparison with the multiline LIF approach. Temperature which was obtained by two-line LIF scheme corresponded well with multiline LIF results for Q1(31.5)/Q1(16.5) excitation. However, for Q1(18.5)/Q1(16.5) excitation, the obtained temperature did not agree with the multiline LIF result because the population of rotational states J=18.5 and J=16.5 is similar at high temperatures. We found that two-line LIF temperature measurement was reliable when excitation lines were suitably selected.  相似文献   

2.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

3.
2 Σ+(v’=1) level of OH. Measurements were performed in a laminar premixed flame at 10 Torr total pressure. The low pressure allowed the spatial variation of the effective quenching rate to be determined through the flame front. In addition, the dependence of the quenching rate on rotational quantum number was measured by exciting a series of rotational lines in the range N’=0–16. The results show that the total quenching rate decreases only 17% through the flame front, in the region where OH can be detected. Nevertheless, the absolute value of the quenching rate Q is required if absolute concentrations are to be determined from LIF-signals. The variation both of Q and of the rotational relaxation rate with excited rotational quantum state must be known for quantification of LIF-temperature measurements via the Boltzmann relation. Finally, the rotational and vibrational energy transfer (RET, VET), was investigated by recording the spectrally and temporally resolved fluorescence. For all excited rotational lines, efficient RET to neighbouring rotational states was observed, but only very little VET. Total RET rates were determined from the difference between the time-resolved broadband (total fluorescence) and narrowband (fluorescence from the laser excited level) curves. The experimental results were compared with simulations using a dynamic model, which describes the energy transfer for flame conditions. With the available input data (temperature, major species concentrations and collision-partner specific RET cross sections), good agreement was obtained. Received: 3 February 1997/Revised version: 3 September 1997  相似文献   

4.
A novel spectroscopic method for highly sensitive detection of hot-band transitions based on infrared-infrared double resonance in a molecular beam was successfully demonstrated. The intensity of the infrared transitions from a vibrationally excited state is enhanced by two orders of magnitude by resonant laser pumping. The hot-band transitions are identified in connection with the assigned transitions in the fundamental band. Doppler-free spectral lines are observed. The experiment was carried out on the 2v 3v 3 transitions of CH3F with CO2 laser pumping and probing.  相似文献   

5.
Determination of the helium-4 mass in a Penning trap   总被引:2,自引:0,他引:2  
The determination of the rotational quadrupole alignment of diatomic molecules via REMPI detection is investigated. In this process a high focal intensity usually increases the detection probability. At high intensities the AC Stark effect may cause a splitting of the normally degenerate mJ sublevels of a rotational state J beyond the spectral width of the exciting radiation. This leads to a selective detection of only certain mJ states with the consequence that deduced alignment factors can be misleading. From the theoretical considerations line profiles are explicitly calculated for dynamic polarizabilities which represent the B 1Σ+ uX 1Σ+ g transition of H2, in order to fit an experimental (3+1) REMPI spectrum and to predict (1+1') line shapes as a function of laser intensity. It is further shown that the deduced quadrupole alignment factor A 0 (2) is significantly changed by the second order AC Stark effect when the intensities are chosen high enough to observe asymmetric broadened line profiles. Different combinations of relative linear polarizations of the exciting and ionizing laser beams are discussed. Received 1st August 2000 and Received in final form 2 May 2001  相似文献   

6.
A diode laser spectrometer was used in the laboratory to study H2O and CO2 line intensities and self-broadening coefficients around 1.877 μm. The spectral region ranging from 5327 cm-1 to 5329 cm-1, which is suitable for the in situ sensing of water vapor and carbon dioxide in the Martian atmosphere, was studied using a distributed feedback GaInSb diode laser from Nanoplus GmbH. We have studied one line from the (011)←(000)band of H2O and two lines from the (0112)I←(000) band of CO2. The results of intensity and self-broadening measurements are compared to available databases, ab initio calculations and previous experimental determinations. Finally, we discuss the current development of the tunable diode laser absorption spectrometer instrument, a laser diode sensor devoted to the in situ measurement of H2O and CO2 in the Martian atmosphere. PACS 07.57.Ty; 07.87.+v  相似文献   

7.
陈爽  苏铁  郑尧邦  陈力  刘亭序  李仁兵  杨富荣 《中国物理 B》2016,25(6):60703-060703
The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF(laserinduced fluorescence) in flame.The detailed physical models of spectral absorption lineshape broadening,collisional transition and quenching at elevated pressure are built.The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation,which include collisional quenching,rotational energy transfer(RET),and vibrational energy transfer(VET).Based on these,some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure.These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor.  相似文献   

8.
R C Sharma  T Kundu  S N Thakur 《Pramana》1998,50(5):419-432
Two-photon optogalvanic transitions in Ar glow discharge with Nd: YAG laser pumped dye laser excitation in the frequency range 13520–16520 cm−1 has been studied using linear and circular polarization. The intensities of two-photon optogalvanic transitions are very sensitive to changes in the incident laser power which is not the case with one-photon transitions. Intensity ratio for circular and linear polarized light for two photon transitions 6s′[1/2]°1←4s[3/2]°2, 6s′[1/2]°0←4s[3/2]°2, and 5d[1/2]°0←4s[3/2]°2, 5d[1/2]°1←4s[3/2]°2 are quite different from the other two-photon transitions. This has been explained as due to near one photon resonance of 4p′[3/2]1 level for the first pair and 4p′[1/2]1 for the second pair of transitions. The ratio of optogalvanic intensity for circular to linear polarized light has been theoretically estimated and compared with the observed results.  相似文献   

9.
Analysis of degenerate four-wave mixing spectra of NO in a CH4/N2/O2 flame   总被引:1,自引:0,他引:1  
4 /N2/O2 flame to spectral simulations based on a two-level theory for stationary, saturable absorbers by Abrams et al. Temperatures determined from least-squares fits of simulations to experimental spectra in the A2Σ+?X2Π+(0,0) band are compared to temperatures obtained from OH absorption spectroscopy and a radiation-corrected thermocouple. We find that DFWM rotational temperatures derived from Q-branch spectra agree with thermocouple and are independent of pump laser intensity for low to moderate saturation (I≈Isat). However, the temperatures are systematically low and depend on pump intensity if the analysis neglects saturation effects. We demonstrate a method for obtaining an effective pump saturation intensity for use with the two-level model. This approach for analyzing saturated DFWM line intensities differs from previous work in that the use of the theory of Abrams et al. rather than a transition-dipole-moment power law allows treatment of a much wider range of saturation. Based on the observed signal-to-noise ratio an NO detection sensitivity of 25 ppm is projected, limited by a DFWM background interference specific to hydrocarbon flames. Received: 15 September 1998 / Revised version: 18 November 1998 / Published online: 24 February 1999  相似文献   

10.
Temperature and OH concentrations derived from OH laser-induced fluorescence (LIF) are known to be susceptible to effects such as collisional quenching, laser absorption, and fluorescence trapping. In this paper, a set of analytical and easy-to-implement methods is presented for treating these effects. The significance of these signal corrections on inferred temperature and absolute OH concentration is demonstrated in an atmospheric-pressure, near-stoichiometric CH4-air flame stabilized on a Hencken burner, for laser excitation of both the A2Σ+←X2Π (0,0) and (1,0) bands. It is found that the combined effect of laser attenuation and fluorescence trapping can cause considerable error in the OH number density and temperature if not accounted for, even with A–X(1,0) excitation. The validity of the assumptions used in signal correction (that the excited-state distribution is either thermalized or frozen) is examined using time-dependent modeling of the ro-vibronic states during and after laser excitation. These assumptions are shown to provide good bounding approximations for treating transition-dependent issues in OH LIF, especially for an unknown collisional environment, and it is noted that the proposed methods are generally applicable to LIF-based measurements.  相似文献   

11.
We present and apply a methodology for the single-shot measurement of absolute concentrations of the OH-radical in a turbulent, premixed natural gas/air flame. The method is based on a combination of detailed numerical simulations of the turbulent flame and an experimental approach using planar laser-induced fluorescence (LIF). The numerical simulation is used to predict LIF intensities. It shows the existence of a sharp correlation between the LIF signal after excitation of the A–X(3,0) P2(8) transition near 248.45 nm and OH concentrations for a wide range of conditions, including stationary and instationary laminar flames of different strain rates, with different models to treat molecular transport and different degrees of heat loss. This correlation allows the transformation of measured OH–LIF intensity images into absolute OH concentration maps. PACS 82.33.Vx; 82.20.Wt; 42.62.Fi An erratum to this article can be found at .  相似文献   

12.
Simultaneous excitation of a considerable part of molecules from many rotational levels of the ground state to higher vibrational states by IR laser radiation can be explained by considering weak transitions in a rotational band structure as it is shown at the example of SF6 molecule. Very accurate compensation of anharmonicity in relatively wide spectral interval at comparatively low intensity of laser radiation can be explained on this basis. The considered scheme can be applied to the molecules of various symmetry with arbitrary anharmonicity.  相似文献   

13.
1 (6) rotational line in the A2Σ+(v=0)←X2Π(v′′=0) band of OH at 309 nm. The requirements for obtaining a good signal-to-noise ratio for the technique are discussed and the possibilities of single-shot measurements are investigated. Received: 31 October 1996/Revised version: 3 December 1996  相似文献   

14.
Two different strategies are compared for linear laser-induced fluorescence (LIF) measurements of nitric oxide concentration ([NO]) in counter-flow diffusion flames at high pressures via the A-X(0,0) system. Excitation of NO via a rovibronic transition at 226.03 nm is found to be slightly better compared to a previously utilized excitation wavelength of 225.58 nm. An indirect approach based on the computed spectral overlap fraction is verified and applied to calibrate [NO] measurements in counter-flow diffusion flames at high pressures. A five-level model for NO molecular dynamics is presented and utilized to investigate the effects of rotational energy transfer (RET) on linear LIF measurements of [NO] at pressures up to 15 atm. The results indicate that rotational relaxation effects are essentially negligible under high-pressure conditions at low laser fluences, and thus they need not be accounted for when measuring [NO] using linear LIF. The calibration technique is validated by direct comparisons to [NO] measurements made at pressures up to 5 atm via another calibration method, based on doping NO in counter-flow premixed flames at the same pressure. Using this calibration technique, LIF measurements of [NO] are obtained in a series of counter-flow diffusion flames at pressures up to 15 atm. These measurements are found to be in excellent agreement with previously reported measurements of [NO] in similar flames. PACS 07.35.+k; 33.20.Sn; 42.62.Fi  相似文献   

15.
The locations of the 000 0_0^0 -bands for S1← S0 and S1 → S0 transitions have been found for C60 solutions in hexane. It is shown that the profile of the S1 ← S0 band is mainly shaped by hu(4), t1u(4)- and hg(1), ag(2)- modes that are active in absorption. Bands involving the hu(4)- and t1u(4)-modes in the emission process have also been identified in the fluorescence spectrum. The appearance of the 000 0_0^0 -band in the forbidden 11T1g ← 11Ag transition is explained by symmetry reduction in the C60+environment system due to the interaction of electrons with local phonons. The temperature coefficients of the red shift for the 256.3- and 328.3-nm bands of allowed 1T1u ← 11Ag transitions for C60 in hexane are equal to –1.45 and –0.46 cm–1·K–1, respectively. The peak and half-width values of the 337.2-nm band for C60 in polystyrene remain unchanged on cooling to 77 K. Absorption in the 700–800-nm region for concentrated hexane solutions of fullerene at 292 K results from the production of (C60)n-clusters.  相似文献   

16.
Using laser-induced fluorescence (LIF), spatially resolved concentration profiles of formaldehyde (H2CO) were obtained in the preheating zone of atmospheric-pressure premixed CH4/air flames stabilized on the central slot of a multiple-slot burner similar in construction to domestic boilers. The isolated pQ1(6) rotational line (339.23 nm) in the 21 041 0 vibronic combination transition in the ?1A2- 1A1 electronic band system around 339 nm was excited in the linear LIF intensity regime. For a quantification of quenching effects on the measured LIF signal intensities, relative fluorescence quantum yields were determined from direct fluorescence lifetime as a function of height above the slot exit. Absolute H2CO number densities in the flames were evaluated from a calibration of measured LIF signal intensities versus those obtained in a low-pressure sample with a known H2CO vapor pressure. Peak concentrations in the slightly lean and rich flames reached (994±298) and (174±52) ppm, respectively. Received: 25 September 2000 / Published online: 30 November 2000  相似文献   

17.
2 Σ+,H′2Π(v=0)←X2Π(v′′=0) two-photon transition of NO, both near-infrared and vacuum ultraviolet radiation were emitted along the laser propagation direction. The analyses of emission and excitation spectra revealed that the parametric four-wave mixing (PFWM) process coexisted with amplified spontaneous emission. Polarization properties of the IR radiation are found to be dependent on the rotational levels. Pressure and laser power behaviors of the generated waves were reported. The mechanism of PFWM was discussed in terms of selection rules of the relevant ro-vibronic transitions. Received: 19 September 1996/Revised version: 27 January 1997  相似文献   

18.
State-to-state rotational energy transfer (RET) co-efficients were determined for inelastic collisions of OH (A 2+, v=0) with N2, CO2, and H2O at 300 K. The experimental procedure described previously allows the direct evaluation of state-specific RET coefficients from time-resolved laser-induced fluorescence (LIF) measurements without any assumptions on the RET. The results show strikingly different RET behaviour for the three collision partners. The data can serve as a basis for a comparison with dynamic collision models.A. Jörg is now with IBM Corporation, Frankfurt, Fed. Rep. Germany  相似文献   

19.
Single-pulse two-dimensional picosecond Laser-Induced Fluorescence (LIF) imaging of the OH density in a single quantum state was performed for the first time, using a premixed methane-oxygen flame at atmospheric pressure. A picosecond, excimer-Raman-laser system (268 nm, 470 ps FWHM) was used for excitation of OH. The fluorescence from the laser sheet was imaged onto a fast gated intensified camera with a 400 ps gate width. The short laser pulse minimizes the collisional redistribution of population in the ground state during excitation, while the short camera gate avoids significant quenching of the excited-state fluorescence. The fluorescence signal obtained in this way is a direct measure of the population in a selected quantum state. In contrast to common nanosecond LIF signals no corrections on variations of the collisional environment are necessary. This collision-insensitive approach to two-dimensional LIF yields an OH detection limit of 10 ppm in a cube of 330 µm per side with a single 1 mJ laser pulse. A rate-equation model is used to estimate the effects on the observed signal of fluctuations in pulse energy and duration, laser-camera timing jitter, and spatial variations in the collisional environment.  相似文献   

20.
The four-photon laser spectroscopy of molecular motions [1] of distilled water in the terahertz and subterahertz spectral ranges is employed to observe resonant lines related to the rotational transitions of ortho and para nuclear spin isomers of the H2O molecule. It is demonstrated that the intensity ratio of the lines of the H2O ortho/para spin isomers in several water samples decreases by a factor of 2.0–2.5 in comparison with the gas-phase ratio. A violation of the equilibrium ortho/para ratio upon the condensation of vapor is interpreted as a manifestation of the spin selectivity in the formation of the H-bonded complexes of the H2O para isomers. The nonequilibrium ortho/para ratio characterizes water at room temperature as an unstable liquid with respect to the spin temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号