首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

2.
An experimental study was done to quantify the effects of a variety of background particulates on the delayed laminar-turbulent transition of a thermally stabilized boundary layer in water. A Laser-Doppler Velocimeter system was used to measure the location of boundary layer transition on a 50 mm diameter, 9:1 fineness ratio ellipsoid. The ellipsoid had a 0.15 m RMS surface finish. Boundary layer transition locations were determined for length Reynolds numbers ranging from 3.0 × 106 to 7.5 × 106. The ellipsoid was tested in three different heating conditions in water seeded with particles of four distinct size ranges. For each level of boundary layer heating, measurements of transition were made for clean water and subsequently, water seeded with 12.5 m, 38.9 m, 85.5 m and 123.2 m particles, alternately. The three surface heating conditions tested were no heating, T = 10°C and T = 15°C where T is the difference between the inlet model heating water temperature, T i, and free stream water temperature, T . The effects of particle concentration were studied for 85.5 m and 123.2 m particulates.The results of the study can be summarized as follows. The 12.5 m and 38.9 m particles has no measurable effect on transition for any of the test conditions. However, transition was significantly affected by the 85.5 m and 123.2 m particles. Above a length Reynolds number of 4 × 106 the boundary layer transition location moved forward on the body due to the effect of the 85.5 m particles for all heating conditions. The largest percentage changes in transition location from clean water, were observed for 85.5 m particles seeded water.Transition measurements made with varied concentrations of background particulates indicated that the effect of the 85.5 m particles on the transition of the model reached a plateau between 2.65 particulates/ml concentration and 4.2 particles/ml. Measurements made with 123.3 m particles at concentrations up to 0.3 part/ml indicated no similar plateau.  相似文献   

3.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

4.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

5.
The steady periodic temperature distribution in an infinitely long solid cylinder crossed by an alternating current is evaluated. First, the time dependent and non-uniform power generated per unit volume by Joule effect within the cylinder is determined. Then, the dimensionless temperature distribution is obtained by analytical methods in steady periodic regime. Dimensionless tables which yield the amplitude and the phase of temperature oscillations both on the axis and on the surface of copper or nichrome cylindrical electric resistors are presented.
Wärmeleitung in einem stromdurchflossenen Zylinder unter Berücksichtigung des Skin-Effektes
Zusammenfassung Es wird die periodische Temperaturverteilung für den eingeschwungenen Zustand in einem unendlich langen, von Wechselstrom durchflossenen Vollzylinder ermittelt. Zuerst erfolgt die Bestimmung der zeitabhängigen, nichgleichförmigen Energiefreisetzung pro Volumeneinheit des Zylinders infolge Joulescher Wärmeentwicklung und anschließend die Ermittlung der quasistationären Temperaturverteilung auf analytischem Wege. Amplitude und Phasenverzögerung der Temperaturschwingungen werden für die Achse und die Oberfläche eines Kupfer- oder Nickelchromzylinders tabellarisch in dimensionsloser Form mitgeteilt.

Nomenclature A integration constant introduced in Eq. (2) - ber, bei Thomson functions of order zero - Bi Biot numberhr 0/ - c speed of light in empty space - c 1,c 2 integration constants introduced in Eq. (46) - c p specific heat at constant pressure - E electric field - E z component ofE alongz - E time independent part ofE, defined in Eq. (1) - f function ofs and defined in Eq. (11) - g function ofs and defined in Eq. (37) - h convection heat transfer coefficient - H magnetic field - i imaginary uniti=(–1)1/2 - I electric current - I eff effective electric currentI eff=I/21/2 - Im imaginary part of a complex number - J n Bessel function of first kind and ordern - J electric current density - q g power generated per unit volume - time average of the power generated per unit volume - time averaged power per unit length - r radial coordinate - R electric resistance per unit length - r 0 radius of the cylinder - Re real part of a complex number - s dimensionless radial coordinates=r/r 0 - s, s integration variables - t time - T temperature - time averaged temperature - T f fluid temperature outside the boundary layer - time average of the surface temperature of the cylinder - u, functions ofs, and defined in Eqs. (47) and (48) - W Wronskian - x position vector - x real variable - Y n Bessel function of second kind and ordern - z unit vector parallel to the axis of the cylinder - z axial coordinate - · modulus of a complex number - equal by definition Greek symbols amplitude of the dimensionless temperature oscillations - electric permittivity - dimensionless temperature defined in Eq. (16) - 0, 1, 2 functions ofs defined in Eq. (22) - thermal conductivity - dimensionless parameter=(2)1/2 - magnetic permeability - 0 magnetic permeability of free space - function of defined in Eq. (59) - dimensionless parameter=c p/() - mass density - electric conductivity - dimensionless time=t - phase of the dimensionless temperature oscillations - function ofs:= 1+i 2 - angular frequency - dimensionless parameter=()1/2 r 0  相似文献   

6.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

7.
The distribution of droplets in a plane Hagen-Poiseuille flow of dilute suspensions has been measured by a special LDA technique. This method assumes a well defined relation between the velocity of the droplets and their lateral position in the channel. The measurements have shown that the droplet distribution is non-uniform and depends on the viscosity ratio between the droplets and the carrier liquid. The results have been compared with a theory by Chan and Leal describing the lateral migration of suspended droplets.List of symbols a particle radius, m - d half width of the channel, m - Re flow Reynolds number, = 2 m · d · /µ - flow velocity, m/s - m flow velocity at the channel axis, m/s - We Weber number, = 2 m Emphasis>/2 · d · / - x distance from center line (x = 0) of the channel, m - non-dimensional distance from the channel center line, x d - y distance along the channel (y = 0 at channel inlet), m - non-dimensional distance along the channel, = y/2d - non-dimensional, normalized distance along the channel, = · m · µ/ - interfacial tension, N/m - viscosity ratio of dispersed (droplet) phase to viscosity of continuous phase - µ viscosity of continuous phase, Pa · s - density of continuous phase, kg/m3 - phase density difference, kg/m3 Experiments were performed at Max-Planck-Institut, Göttingen  相似文献   

8.
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation A total cross-sectional area assigned to capillary bundle - A (i) physical cross-sectional area of tube i - c (i) ordered configurational label for droplets in tube i - c configuration label for tube i (order not considered) - D defined by Equation (26) - E(...) expectation value with respect to the trinomial distribution - S r () fractional flow of phase - k absolute permeability - k r relative permeability of phase - k r 0 endpoint relative permeability of phase - L capillary tube length in bundle model - m (i) number of droplets of phase a occupying tube i - n exponent for phase a in Equation (2) - N number of droplets in bundle model - N c capillary number - p pressure - p(c') probability of configuration c - Q (i) total volume flow rate in tube i - S saturation of phase - S flowing saturation of phase - S r residual saturation of phase - S r () saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( ) - t c residence time for droplet configuration c - v (i) total fluid velocity in bundle tube i - , phase label - p pressure differential across capillary bundle - (i) tube conductivity defined by Equation (7) - viscosity of phase - interfacial tension - gradient operator - ... average over tube droplet configurations  相似文献   

9.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

10.
An analogue experiment is proposed to simulate flame flickering comprising a free ascending column fed on its side with a light gas (helium) emerging from a vertical slot in ambient air. The convective motion of the helium jet is considered to represent the motion of burnt gases of buoyant jet flames. The helium jet is accelerated by buoyancy effects and the flow field is similar to that of burnt gases observed for real buoyant flames. The vertical velocity profile of the steady helium jet is measured at different vertical distances. The unsteady helium jet is also studied by measuring the instability frequency as a function of ambient pressure at different injection flow rates, and by analyzing the tomography images of the helium jet. The instability morphology is the same as that observed on real buoyant flames. We conclude that this type of instability can be approximately characterized by the maximum vertical velocityu max, and the distance betweenu max in the helium ascending column andu = o in the ambient air. For this type of instability the local vorticity is proportional to which can be influenced by gravity and ambient pressure. Theoretical prediction of the instability frequency as a function of gravity and ambient pressure has been obtained, and is in good agreement with the experimental results.List of symbols C 1,C 2 constants - F instability frequency - F c critical frequency - F m the most amplified frequency - F (K, ) function defined in (11) - g gravitational acceleration - g reduced gravity acceleration g(0-*)/* - k real wave number of the disturbance - K reduced wave numberK=2k - K c reduced wave number of the critical instability mode - K m nondimensional wavenumber of the most amplified mode - L vertical characteristic length (in x direction) - P ambient pressure - u local vertical buoyant velocity (inx direction) - u max local maximum vertical velocity - v local velocity component iny direction (horizontal) - V 0 injection velocity of helium (iny direction) - x vertical distance measured from the leading edge of boundary layer - y horizontal distance measured from the exit plane of the vertical slot - Z(K, ) function defined in equation (11) Greek symbols distance betweenu max in the helium ascending column andu = o in the ambient air - - wavelength of instability - c critical wavelength - m the most amplified wavelength - * helium density at slot exit - 0 ambient air density - * helium dynamic viscosity at slot exit - v * helium kinematic viscosity at slot exit - complex number presented in disturbancee i(kx+t) - i imaginary part of , representing the amplification rate of disturbance - r real part of , where ( r /k) represents the group velocity - reduced complex number of , defined   相似文献   

11.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

12.
The non-isothermal mass transport in a circular tube has been investigated for an Ostwald-de-Waele liquid. The influence of the velocity profile parameter, the flow parameter, the thermal diffusion, the diffusive heat transfer as well as the ratio of the Schmidt- to the Prandtl number upon the concentration- and temperature profile along the tube have been determined. The results are compared with the plug flow case and also with the isothermal mass transport. It was found that considerable differences in the mass transport and heat transport occur through their coupling effect.
Nichtisothermer Stofftransport in einem Rohr für die Strömung einer nicht-Newtonschen Flüssigkeit
Zusammenfassung Für eine Ostwald-de-Waele Flüssigkeit wurde der nichtisotherme Stofftransport in einem Kreiszylinderrohr untersucht. Dabei wurde der Einfluß des Geschwindigkeitsparameters, des Strömungsparameters, der Wärmediffusion, des diffusen Wärmetransportes, sowie der Einfluß des Verhältnisses von Schmidt- zur Prandtlzahl auf das Konzentrations- und Temperaturprofil entlang der Rohrlauflänge untersucht. Die Ergebnisse wurden mit dem Fall eines Kolbenprofiles und mit denen des isothermen Stofftransportes verglichen. Dabei konnten erhebliche Differenzen in der Konzentrations- und Wärmeverteilung durch den Koppelungseffekt festgestellt werden.

Nomenclature a radius of tube - c concentration - c i initial concentration at inlet z=0 - c w wall concentration - D diffusion coefficient - J m Besselfunction of first kind andm th order - j diffusive mass flux - K material constant - p liquid pressure - dp/dz pressure gradient along tube - q heat flux - r, ,z cylindrical coordinates - S entropy - T temperature { Tw wall temperature Ti initial temperature at inlet - w axial velocity of liquid - k T thermal diffusion ratio - N thermodynamic parameter - .=k T/T parameter - n zeros ofJ 0 (n)=0 - parameter (=0 plug flow, 1 Ostwald-de-Waele flow) - material constant { < 1 dilatant > 1 pseudoplastics } - effective chemical potential - thermal conductivity - thermal diffusivity of mixture - liquid density - dynamic viscosity of Newtonian liquid - shear stress - eigenvalues  相似文献   

13.
Calculations were performed on the basis of a generalized Gibbs energy of mixing G , which is the sum of the Gibbs energy of mixing of the stagnant system and E s, the energy stored in the system during stationary flow. With increasing shear rate , the demixing temperatures shift to lower values (shear-induced mixing; diminution of the heterogeneous area), then to higher values (shear-induced demixing), and finally to lower values again before the effects fade out. The details of the rather complex phase diagrams resulting for a given shear rate are primarily determined by a band in the T/ plane ( = mole fraction) within which (2 E s/2) T <0 (i.e., E S acts towards phase separation). There are two ranges of within which closed miscibility gaps can exist: The more common outer islands are partly or totally situated outside the equilibrium gap (and within the above mentioned band). As is raised they break away from the mainland at the upper end of the first region of shear-induced mixing and shift to T>UCST where they submerge. Bound to a suitable choice of parameters, a second kind of closed miscibility gaps, the inner islands, which always remain within the equilibrium solubility gap (and outside the band of negative curvature of E S) is additionally observed. This time the islands break away from the mainland at the lower end of the first region of shear-induced mixing where they also submerge. The present findings are compared with the results of previous calculations for LCSTs.  相似文献   

14.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

15.
Zusammenfassung Für die Durchsatzströmung im Rohr wird mit Hilfe der klassischen hydrodynamischen Stabilitätstheorie gezeigt, daß die inkompressible Flüssigkeit zweiter Ordnungs = –pI + 2(d + 2t 1 d 2t 0 d) stabil ist gegenüber kleinen rotationssymmetrischen Störungen.
Summary For Poiseuille pipe flow it is shown by means of the classical theory of hydrodynamic stability, that the incompressible second-order fluids = –pI + 2(d + 2t 1 d 2t 0 d) is stable with respect to small disturbances of rotational symmetry.

Nomenklatur a n Koeffizienten der Reihenentwicklung - c = /k komplexe Wellengeschwindigkeit - d Deformationsgeschwindigkeitstensor - D, D dimensionsloser Deformationsgeschwindigkeitstensor (Grund- und Störtensor) - e i kovariante Basis - g Vektor der Erdbeschleunigung - I Einheitstensor - k Wellenzahl - M, O, S, Q, T Funktion vonk, Re, 0 - p, P, p Gesamt-, Grund-, Stördruck - r, (r, , z) dimensionsloser Ortsvektor (Zylinderkoordinaten) - R Rohrradius - Re =U M R/ Reynoldszahl - s(s *=s*pI) Spannungstensor (Isotroper Anteil des ) - t 0,t 1 Stoffzeiten, Parameter der Flüssigkeit zweiter Ordnung - t Zeit - u, U, u Vektor der Gesamt-, Grund-, Störgeschwindigkeit - U M Maximale Grundgeschwindigkeit - v, V, v Vektor der dimensionslosen Gesamt-, Grund-, Störgeschwindigkeit - w Rotationsgeschwindigkeitstensor - W, W Rotationsgeschwindigkeitstensor, dimensionslos (Grund-, Störtensor) - x (x r ,x ,x z ) Ortsvektor (Zylinderkoordinaten) - Viskosität - 0, 1 dimensionslose Stoffzeiten - dimensionsloser Druck - Dichte - dimensionslose Zeit - Stromfunktion, dimensionslos - komplexe Frequenz, dimensionslos - = e i /x i Nablaoperator (e i kontravariante Basis) - * Nablaoperator, dimensionslos - R, I Real-, Imaginärteil Mit 4 Abbildungen  相似文献   

16.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

17.
Experimental investigation and analysis of heat transfer process between a gas-liquid spray flow and the row of smooth cylinders placed in the surface perpendicular to the flow has been performed. Among others, there was taken into account in the analysis the phenomenon of droplets bouncing and omitting the cylinder as well as the phenomenon of the evaporation process from the liquid film surface.In the experiments test cylinders were used, which were placed between two other cylinders standing in the row.From the experiments and the analysis the conclusion can be drawn that the heat transfer coefficients values for a row of the cylinders are higher than for a single cylinder placed in the gasliquid spray flow.
Wärmeübergang an eine senkrecht anf eine Zylinderreihe auftreffende Gas-Flüssigkeits-Sprüh-Strömung
Zusammenfassung Es wurden Messungen und theoretische Analysen des Wärmeübergangs zwischen einer Gas-FlüssigkeitsSprüh-Strömung und den glatten Oberflächen einer Zylinderreihe durchgeführt, die senkrecht zum Sprühstrahl angeordnet waren. Dabei wurde in der Analyse unter anderem das Phänomen betrachtet, daß die Tropfen die Zylinderwand treffen und verfehlen können und daß sich ein Verdampfungsprozeß aus dem flüssigen Film an der Zylinderoberfläche einstellt.Gemessen wurde an einem zwischen zwei Randzylindern befindlichen Zylinder.Die Experimente und die Analyse gestatten die Schlußfolgerung, daß der Wärmeübergangskoeffizient für eine Zylinderreihe höher ist als für einen einzelnen Zylinder in der Sprühströmung.

Nomenclature a distance between axes of cylinders, m - c l specific heat capacity of liquid, J/kg K - c g specific heat capacity of gas, J/kg K - D cylinder diameter, m - g l mass velocity of liquid, kg/m2s - ¯k average volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - k() local volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - L specific latent heat of vaporisation, J/kg - m mass fraction of water in gas-liquid spray flow, dimensionless - M constant in Eq. (9) - p pressure, Pa - p g statical pressure of gas, Pa - p w pressure of gas on the cylinder surface, Pa - p external pressure on the liquid film surface, Pa - r cylindrical coordinate, m - R radius of cylinder, m - T temperature, K, °C - T l, tl liquid temperature in the gas-liquid spray, K, °C - T w,tw temperature of cylinder surface, K, °C - T temperature of gas-liquid film interface, K - U liquid film velocity, m/s - w gas velocity on cylinder surface, m/s - w g gas velocity in free stream, m/s - W l liquid vapour mass ratio in free stream, dimensionless - W liquid vapour mass ratio at the edge of a liquid film, dimensionless - x coordinate, m - y coordinate, m - z complex variable, dimensionless - average heat transfer coefficient, W/m2K - local heat transfer coefficient, W/m2 K - average heat transfer coefficient between cylinder surface and gas, W/m2 K - g, local heat transfer coefficient between cylinder surface and gas, W/m2 K - mass transfer coefficient, kg/m2s - liquid film thickness, m - lg dynamic diffusion coefficient of liquid vapour in gas, kg/m s - pressure distribution function on a cylinder surface - function defined by Eq. (3) - l liquid dynamic viscosity, kg/m s - g gas dynamic viscosity, kg/m s - cylindrical coordinate, rad, deg - l thermal conductivity of liquid, W/m K - g thermal conductivity of gas, W/m K - mass transfer driving force, dimensionless - l density of liquid, kg/m3 - g density of gas, kg/m3 - w shear stress on the cylinder surface, N/m2 - w shear stress exerted by gas at the liquid film surface, N/m2 - air relative humidity, dimensionless - T -T w - w =T wTl Dimensionless parameters I= enhancement factor of heat transfer - m *=M l/Mg molar mass of liquid to the molar mass of gas ratio - Nu g= D/ g gas Nusselt number - Pr g=c g g/g gas Prandtl number - Pr l=clll liquid Prandtl number - ¯r=(r–R)/ dimensionless coordinate - Re g=wgD g/g gas Reynolds number - Re g,max=wg,max D g/g gas Reynolds number calculated for the maximal gas velocity between the cylinders - Sc=m * g/l–g Schmidt number =/R dimensionless film thickness  相似文献   

18.
The mixed convection flow in a vertical duct is analysed under the assumption that , the ratio of the duct width to the length over which the wall is heated, is small. It is assumed that a fully developed Poiseuille flow has already been set up in the duct before heat from the wall causes this to be changed by the action of the buoyancy forces, as measured by a buoyancy parameter . An analytical solution is derived for the case when the Reynolds numberRe, based on the duct width, is of 0 (1). This is extended to the case whenRe is 0 (–1) by numerical integrations of the governing equations for a range of values of representing both aiding and opposing flows. The limiting cases, || 1 andR=Re of 0 (1), andR and both large, with of 0 (R 1/3) are considered further. Finally, the free convection limit, large with R of 0 (1), is discussed.
Mischkonvektion in engen senkrechten Rohren
Zusammenfassung Mischkonvektion in einem senkrechten Rohr wird unter der Voraussetzung untersucht, daß das Verhältnis der Rohrbreite zur Länge, über welche die Wand beheizt wird, klein ist. Es wird angenommen, daß sich bereits eine voll entwickelte Poiseuille-Strömung in dem Rohr eingestellt hat, bevor Antriebskräfte, gemessen mit dem Auftriebsparameter , aufgrund der Wandbeheizung die Strömung verändern. Es wird eine analytische Lösung für den Fall erhalten, daß die mit der Rohrbreite als charakteristische Länge gebildete Reynolds-ZahlRe konstant ist. Dies wird mittels einer numerischen Integration der wichtigsten Gleichungen auf den FallRe =f (–1) sowohl für Gleich- als auch für Gegenstrom ausgedehnt. Weiterhin werden die beiden Grenzfälle betrachtet, wenn || 1 undR=Re konstant ist, sowieR und beide groß mit proportionalR 1/3. Schließlich wird der Grenzfall der freien Konvektion, großes mit konstantem R, diskutiert.

Nomenclature g acceleration due to gravity - Gr Grashof number - G modified Grashof number - h duct width - l length of the heated section of the duct wall - p pressure - Pr Prandtl number - Q flow rate through the duct - Q 0 heat transfer on the wally=0 - Q 1 heat transfer on the wally=1 - Re Reynolds number - R modified Reynolds number - T temperature of the fluid - T 0 ambient temperature - T applied temperature difference - u, velocity component in thex-direction - v, velocity component in they-direction - x, co-ordinate measuring distance along the duct - y, co-ordinate measuring distance across the duct - buoyancy parameter - 0 modified buoyancy parameter, 0=R –1/3 - coefficient of thermal expansion - ratio of duct width to heated length, =h/l - (non-dimensional) temperature - w applied temperature on the wally=0 - kinematic viscosity - density of the fluid - 0 shear stress on the wally=0 - 1 shear stress on the wally=1 - stream function  相似文献   

19.
Summary A single integral constitutive equation with strain dependent and factorized memory function is applied to describe the time dependence of the shear stress, the primary normal-stress difference, and, by using the stress-optical law, also the extinction angle and flow birefringence of a polystyrene melt in intermittent shear flows. The theoretical predictions are compared with measurements. The nonlinearity of the viscoelastic behaviour which is represented by the so called damping function, is approximated by a single exponential function with one parametern. The damping constantn as well as a discrete relaxation time spectrum of the melt can be determined from the frequency dependence of the loss and storage moduli.
Zusammenfassung Eine Zustandsgleichung vom Integraltyp mit einer deformationsabhängigen und faktorisierten Gedächtnisfunktion wird zur Beschreibung der Zeitabhängigkeit der Schubspannung, der ersten Normalspannungsdifferenz und, unter Verwendung des spannungsoptischen Gesetzes, auch des Auslöschungswinkels und der Strömungsdoppelbrechung einer Polystyrol-Schmelze bei Scherströmungen herangezogen. Die theoretischen Voraussagen werden mit Messungen verglichen. Die Nichtlinearität des viskoelastischen Verhaltens, repräsentiert durch die sogenannte Dämpfungsfunktion, wird durch eine einfache Exponentialfunktion mit nur einem Parametern angenähert. Die Dämpfungskonstanten kann, wie auch ein diskretes Relaxationszeitspektrum der Schmelze, aus der Frequenzabhängigkeit der Speicher- und Verlustmoduln bestimmt werden.

a i weight factor of thei-th relaxation time - a T shift factor - C stress-optical coefficient - n flow birefringence in the shear flow plane - shear relaxation modulus - G() shear storage modulus - () shear loss modulus - H() relaxation time spectrum - h( t,t 2 ) damping function - M w weight-average molecular weight - M n number-average molecular weight - n damping constant - p 12 shear stress - p 11p 22 primary normal stress difference - t current time - t past time - extinction angle - ( — i) delta function - time and shear rate dependent viscosity - | *| absolute value of the complex viscosity - shear rate - t,t relative shear strain between the statest andt - memory function - angular frequency - relaxation time - i i-th relaxation time of the line spectrum - time and shear rate dependent primary normal stress coefficient - s steady-state value - t time dependence - ° linear viscoelastic behaviour With 6 figures and 1 table  相似文献   

20.
Zusammenfassung Für die eingefrorene laminare Grenzschichtströmung eines teilweise dissoziierten binären Gemisches entlang einer stark gekühlten ebenen Platte wird eine analytische Näherungslösung angegeben. Danach läßt sich die Wandkonzentration als universelle Funktion der Damköhler-Zahl der Oberflächenreaktion angeben. Für das analytisch darstellbare Konzentrationsprofil stellt die Damköhler-Zahl den Formparameter dar. Die Wärmestromdichte an der Wand bestehend aus einem Wärmeleitungs- und einem Diffusionsanteil wird angegeben und diskutiert. Das Verhältnis beider Anteile läßt sich bei gegebenen Randbedingungen als Funktion der Damköhler-Zahl ausdrücken.
An analytical approximation for the frozen laminar boundary layer flow of a binary mixture
An analytical approximation is derived for the frozen laminar boundary layer flow of a partially dissociated binary mixture along a strongly cooled flat plate. The concentration at the wall is shown to be a universal function of the Damkohler-number for the wall reaction. The Damkohlernumber also serves as a parameter of shape for the concentration profile which is presented in analytical form. The heat transfer at the wall depending on a conduction and a diffusion flux is derived and discussed. The ratio of these fluxes is expressed as a function of the Damkohler-number if the boundary conditions are known.

Formelzeichen A Atom - A2 Molekül - C Konstante in Gl. (20) - c1=1/(2C) Konstante in Gl. (35) - cp spezifische Wärme bei konstantem Druck - D binärer Diffusionskoeffizient - Ec=u 2 /(2hf) Eckert-Zahl - h spezifische Enthalpie - ht=h+u2/2 totale spezifische Enthalpie - h A 0 spezifische Dissoziationsenthalpie - Kw Reaktionsgeschwindigkeitskonstante der heterogenen Wandreaktion - 1= /( ) Champman-Rubesin-Parameter - Le=Pr/Sc Lewis-Zahl - M Molmasse - p statischer Druck - Pr= cpf/ Prandtl-Zahl - qw Wärmestromdichte an der Wand - qcw, qdw Wärmeleitungsbzw. Diffusionsanteil der Wärmestromdichte an der Wand - universelle Gaskonstante - R=/(2Ma) individuelle Gaskonstante der molekularen Komponente - Rex= u x/ Reynolds-Zahl - Sc=/( D) Schmidt-Zahl - T absolute Temperatur - Td=h A 0 /R charakteristische Dissoziationstemperatur - u, v x- und y-Komponenten der Geschwindigkeit - U=u/u normierte x-Komponente der Geschwindigkeit - x, y Koordinaten parallel und senkrecht zur Platte Griechische Symbole - =A/ Dissoziationsgrad - Grenzschichtdicke - 2 Impulsverlustdicke - Damköhler-Zahl der Oberflächenreaktion - =T/T normierte Temperatur - =y/ normierter Wandabstand - Wärmeleitfähigkeit - dynamische Viskosität - , * Ähnlichkeitskoordinaten - Dichte - Schubspannung Indizes A auf ein Atom bezogen - M auf ein Molekül bezogen - f auf den eingefrorenen Zustand bezogen - w auf die Wand bezogen - auf den Außenrand der Grenzschicht bezogen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号