首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

2.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

3.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

4.
The La(2+) complex [K(18-crown-6)(OEt(2))][Cp″(3)La] (1) [Cp″ = C(5)H(3)(SiMe(3))(2)-1,3], can be synthesized under N(2), but in the presence of KC(5)Me(5), 1 reduces N(2) to the (N═N)(2-) product [(C(5)Me(5))(2)(THF)La](2)(μ-η(2):η(2)-N(2)). This suggests a dichotomy in terms of ligands that optimize isolation of reduced dinitrogen complexes versus isolation of divalent complexes of the rare earths. To determine whether the first crystalline molecular Y(2+) complex could be isolated using this logic, Cp'(3)Y (2) (Cp' = C(5)H(4)SiMe(3)) was synthesized from YCl(3) and KCp' and reduced with KC(8) in the presence of 18-crown-6 in Et(2)O at -45 °C under argon. EPR evidence was consistent with Y(2+) and crystallization provided the first structurally characterizable molecular Y(2+) complex, dark-maroon-purple [(18-crown-6)K][Cp'(3)Y] (3).  相似文献   

5.
Yan L  Liu H  Wang J  Zhang Y  Shen Q 《Inorganic chemistry》2012,51(7):4151-4160
Metathesis reactions of YbI(2) with Li(2)L (L = Me(3)SiN(Ph)CN(CH(2))(3)NC(Ph)NSiMe(3)) in THF at a molar ratio of 1:1 and 1:2 both afforded the Yb(II) iodide complex [{YbI(DME)(2)}(2)(μ(2)-L)] (1), which was structurally characterized to be a dinuclear Yb(II) complex with a bridged L ligand. Treatment of EuI(2) with Li(2)L did not afford the analogous [{EuI(DME)(2)}(2)(μ(2)-L)], or another isolable Eu(II) complex, but the hexanuclear heterobimetallic cluster [{Li(DME)(3)}(+)](2)[{(EuI)(2)(μ(2)-I)(2)(μ(3)-L)(2)(Li)(4)}(μ(6)-O)](2-) (2) was isolated as a byproduct in a trace yield. The rational synthesis of cluster 2 could be realized by the reaction of EuI(2) with Li(2)L and H(2)O in a molar ratio of 1:1.5:0.5. The reduction reaction of LLnCl(THF)(2) (Ln = Yb and Eu) with Na/K alloy in THF gave the corresponding Ln(II) complexes [Yb(3)(μ(2)-L)(3)] (3) and [Eu(μ(2)-L)(THF)](2) (4) in good yields. An X-ray crystal structure analysis revealed that each L in complex 3 might adopt a chelating ligand bonding to one Yb atom and each Yb atom coordinates to an additional amidinate group of the other L and acts as a bridging link to assemble a macrocyclic structure. Complex 4 is a dimer in which the two monomers [Eu(μ(2)-L)(THF)] are connected by two μ(2)-amidinate groups from the two L ligands. Complex 3 reacted with CyN═C═NCy and diazabutadienes [2,6-(i)Pr(2)C(6)H(3)N═CRCR═NC(6)H(3)(i)Pr(2)-2,6] (R═H, CH(3)) (DAD) as a one-electron reducing agent to afford the corresponding Yb(III) derivatives: the complex with an oxalamidinate ligand [LYb{(NCy)(2)CC(NCy)(2)}YbL] (5) and the complexes containing a diazabutadiene radical anion [LYb((i)Pr(2)C(6)H(3)NCRCRNC(6)H(3)(i)Pr(2))] (R = H (6), R = CH(3) (7)). Complexes 5-7 were confirmed by an X-ray structure determination.  相似文献   

6.
The Ln[N(SiMe(3))(2)](3)/K dinitrogen reduction system, which mimicks the reactions of the highly reducing divalent ions Tm(II), Dy(II), and Nd(II), has been explored with the entire lanthanide series and uranium to examine its generality and to correlate the observed reactivity with accessibility of divalent oxidation states. The Ln[N(SiMe(3))(2)](3)/K reduction of dinitrogen provides access from readily available starting materials to the formerly rare class of M(2)(mu-eta(2):eta(2)-N(2)) complexes, [[(Me(3)Si)(2)N](2)(THF)Ln](2)(mu-eta(2):eta(2)-N(2)), 1, that had previously been made only from TmI(2), DyI(2), and NdI(2) in the presence of KN(SiMe(3))(2). This LnZ(3)/alkali metal reduction system provides crystallographically characterizable examples of 1 for Nd, Gd, Tb, Dy, Ho, Er, Y, Tm, and Lu. Sodium can be used as the alkali metal as well as potassium. These compounds have NN distances in the 1.258(3) to 1.318(5) A range consistent with formation of an (N=N)(2)(-) moiety. Isolation of 1 with this selection of metals demonstrates that the Ln[N(SiMe(3))(2)](3)/alkali metal reaction can mimic divalent lanthanide reduction chemistry with metals that have calculated Ln(III)/Ln(II) reduction potentials ranging from -2.3 to -3.9 V vs NHE. In the case of Ln = Sm, which has an analogous Ln(III)/Ln(II) potential of -1.55 V, reduction to the stable divalent tris(amide) complex, K[Sm[N(SiMe(3))(2)](3)], is observed instead of dinitrogen reduction. When the metal is La, Ce, Pr, or U, the first crystallographically characterized examples of the tetrakis[bis(trimethylsilyl)amide] anions, [M[N(SiMe(3))(2)](4)](-), are isolated as THF-solvated potassium or sodium salts. The implications of the LnZ(3)/alkali metal reduction chemistry on the mechanism of dinitrogen reduction and on reductive lanthanide chemistry in general are discussed.  相似文献   

7.
The reactivity of the tetraphenylborate salts of the rare earth metallocene cations [(C(5)Me(5))(2)Ln][(μ-Ph)(2)BPh(2)] (Ln = Y, 1; Sm, 2) has been investigated with substrates that undergo reduction with f element complexes to probe metal-substrate interactions prior to reduction. Results with NaN(3), 1-adamantyl azide, acetone, benzophenone, phenanthroline, pyridine, azobenzene, and phenazine are described. Not only were coordination complexes isolated, but substrate reduction by (BPh(4))(-) was also observed. Complex 1 reacts with NaN(3) to form the azide [(C(5)Me(5))(2)YN(3)](x), 3, which crystallizes as [(C(5)Me(5))(2)Y(μ-N(3))](3), 4, when obtained from 1 and 1-adamantyl azide. The samarium analogue [(C(5)Me(5))(2)SmN(3)](x), 5, can be produced similarly from 2 and NaN(3) and crystallized from MeCN as [(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))](3), 6, and {[(C(5)Me(5))(2)Sm(μ-N(3))][(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))]}(n), 7. Complexes 1 and 2 react with stoichiometric amounts of acetone and benzophenone to form the ketone adducts [(C(5)Me(5))(2)Ln(OCMe(2))(2)][BPh(4)] (Ln = Y, 8; Sm, 9) and [(C(5)Me(5))(2)Ln(OCPh(2))(2)][BPh(4)] (Ln = Y, 10; Sm, 11), respectively. Phenanthroline (phen) coordinates to 1 to form [(C(5)Me(5))(2)Y(phen)][BPh(4)], 12. Complexes 1 and 2 react with pyridine (py) to form [(C(5)Me(5))(2)Ln(py)(2)][BPh(4)], (Ln = Y, 13; Sm, 14). Complexes 3, 8, 10, and 12 can also be made from the solvated cation [(C(5)Me(5))(2)Y(THF)(2)][BPh(4)]. The reaction of 1 with PhNNPh yields the diamagnetic adduct [(C(5)Me(5))(2)Y(PhNNPh)][BPh(4)], 15, which transforms in benzene to the radical anion complex (C(5)Me(5))(2)Y(PhNNPh), 16, via a one electron reduction by (BPh(4))(-). Complex 1 similarly reacts with phenazine (phz) to produce the first rare earth phenazine radical anion complex {[(C(5)Me(5))(2)Y](2)(phz)}{BPh(4)}, 17. Further reduction of phenazine by (BPh(4))(-) in 17 yields [(C(5)Me(5))(2)Y](2)(phz), 18, which contains the common (phz)(2-) dianion. The reduction of fluorenone by (BPh(4))(-) is also reported.  相似文献   

8.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

9.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

10.
The heterocumulenes carbon dioxide (CO(2)), carbonyl sulfide (OCS), and carbon disulfide (CS(2)) were treated with bis(2,2,5,5-tetramethyl-2,5-disila-1-azacyclopent-1-yl)tin {[(CH(2))Me(2)Si](2)N}(2)Sn, an analogue of the well-studied bis[bis(trimethylsilyl)amido]tin species [(Me(3)Si)(2)N](2)Sn, to yield an unexpectedly diverse product slate. Reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CO(2) resulted in the formation of 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane, along with Sn(4)(μ(4)-O){μ(2)-O(2)CN[SiMe(2)(CH(2))(2)]}(4)(μ(2)-N═C═O)(2) as the primary organometallic Sn-containing product. The reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CS(2) led to formal reduction of CS(2) to [CS(2)](2-), yielding [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn, in which the [CS(2)](2-) is coordinated through C and S to two tin centers. The product [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn also contains a novel 4-membered Sn-Sn-C-S ring, and exhibits a further bonding interaction through sulfur to a third Sn atom. Reaction of OCS with {[(CH(2))Me(2)Si](2)N}(2)Sn resulted in an insoluble polymeric material. In a comparison reaction, [(Me(3)Si)(2)N](2)Sn was treated with OCS to yield Sn(4)(μ(4)-O)(μ(2)-OSiMe(3))(5)(η(1)-N═C═S). A combination of NMR and IR spectroscopy, mass spectrometry, and single crystal X-ray diffraction were used to characterize the products of each reaction. The oxygen atoms in the final products come from the facile cleavage of either CO(2) or OCS, depending on the reacting carbon dichalogenide.  相似文献   

11.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

12.
Seven acetate-diphenoxo triply bridged M(II)-Ln(III) complexes (M(II) = Ni(II) and Ln(III) = Gd, Tb, Ho, Er, and Y; M(II) = Zn(II) and Ln(III) = Ho(III) and Er(III)) of formula [M(μ-L)(μ-OAc)Ln(NO(3))(2)], one nitrate-diphenoxo triply bridged Ni(II)-Tb(III) complex, [Ni(μ-L)(μ-NO(3))Tb(NO(3))(2)]·2CH(3)OH, and two diphenoxo doubly bridged Ni(II)-Ln(III) complexes (Ln(III) = Eu, Gd) of formula [Ni(H(2)O)(μ-L)Ln(NO(3))(3)]·2CH(3)OH have been prepared in one pot reaction from the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H(2)L). Moreover, Ni(II)-Ln(III) complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the M(μ-O(2))Ln bridging fragment of ~22°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of ~13° and ~2°, respectively. All Ni(II)-Ln(III) complexes exhibit ferromagnetic interactions between Ni(II) and Ln(III) ions and, in the case of the Gd(III) complexes, the J(NiGd) coupling increases weakly but significantly with the planarity of the M-(O)(2)-Gd bridging fragment and with the increase of the Ni-O-Gd angle. Density functional theory (DFT) theoretical calculations on the Ni(II)Gd(III) complexes and model compounds support these magneto-structural correlations as well as the experimental J(NiGd) values, which were found to be ~1.38 and ~2.1 cm(-1) for the folded [Ni(μ-L)(μ-OAc)Gd(NO(3))(2)] and planar [Ni(H(2)O)(μ-L)Gd(NO(3))(3)]·2CH(3)OH complexes, respectively. The Ni(II)Dy(III) complexes exhibit slow relaxation of the magnetization with Δ/k(B) energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN, respectively.  相似文献   

13.
Treatment of [(C(5)Me(5))(2)YH](2), 1, with KC(8) under N(2) in methylcyclohexane generates the unsolvated reduced dinitrogen complex, [(C(5)Me(5))(2)Y](2)(μ-η(2):η(2)-N(2)), 2, and extends the range of yttrium and lanthanide LnZ(2)Z'/M (Z = monoanion; M = alkali metal) dinitrogen reduction reactions to (Z')(-) = (H)(-). The hydride complex, 1, is unique in this reactivity compared to other alkane-soluble yttrium metallocenes, [(C(5)Me(5))(2)YX](x) {X = [N(SiMe(3))(2)](-), (Me)(-), (C(3)H(5))(-), and (C(5)Me(5))(-)} which did not generate 2 when treated with KC(8). [(C(5)Me(5))(2)LnH](x)/KC(8)/N(2) reactions with Ln = La and Lu did not give isolable dinitrogen complexes. Complex 2 and the unsolvated lutetium analogue, [(C(5)Me(5))(2)Lu](2)(μ-η(2):η(2)-N(2)), 3, were obtained using benzene as a solvent and [(C(5)Me(5))(2)Ln][(μ-Ph)(2)BPh(2)] as precursors with excess KC(8). Complex 2 functions as a reducing agent with PhSSPh to form [(C(5)Me(5))(2)Y(μ-SPh)](2), 4, in high yield.  相似文献   

14.
Cao Y  Du Z  Li W  Li J  Zhang Y  Xu F  Shen Q 《Inorganic chemistry》2011,50(8):3729-3737
Reaction of Ln(OAr(1))(3)(THF)(2) (Ar(1)= [2,6-((t)Bu)(2)-4-MeC(6)H(2)] with carbodiimides (RNCNR) in toluene afforded the RNCNR coordinated complexes (Ar(1)O)(3)Ln(NCNR) (R = (i)Pr (isopropyl), Ln = Y (1) and Yb (2); R = Cy (cyclohexyl), Ln = Y (3)) in high yields. Treatment of 1 and 2 with 4-chloroaniline, respectively, at a molar ratio of 1:1 yielded the corresponding monoguanidinate complex (Ar(1)O)(2)Y[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (4) and (Ar(1)O)(2)Yb[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (5). Complexes 4 and 5 can be prepared by the reaction of Ln(OAr(1))(3)(THF)(2) with RNCNR and amine in toluene at a 1:1:1 molar ratio in high yield directly. A remarkable influence of the aryloxide ligand on this transformation was observed. The similar transformation using the less bulky yttrium complexes Y(OAr(2))(3)(THF)(2) (Ar(2) = [2,6-((i)Pr)(2)C(6)H(3)]) or Y(OAr(3))(3)(THF)(2) (Ar(3) = [2,6-Me(2)C(6)H(3)]) did not occur. Complexes Ln(OAr(1))(3)(THF)(2) were found to be the novel precatalysts for addition of RNCNR with amines, which represents the first example of catalytic guanylation by the lanthanide complexes with the Ln-O active group. The catalytic activity of Y(OAr(1))(3)(THF)(2) was found to be the same as that of monoguanidinate complex 4, indicating 4 is one of the active intermediates in the present process. The other intermediate, amide complex (Ar(1)O)(2)Ln[(2-OCH(3)-C(6)H(4)NH)(2-OCH(3)-C(6)H(4)NH(2))] (6), was isolated by protonolysis of 4 with 2-OCH(3)-C(6)H(4)NH(2). All the complexes were structurally characterized by X-ray single crystal determination.  相似文献   

15.
Treatment of [Cp*Rh(H(2)O)(3)](OTf)(2) (1) with Me(3)SiNH-t-Bu in acetone gave a hydroxyl-capped half-cubane [Cp*(3)Rh(3)(mu-OH)(3)(mu(3)-OH)](OTf)(3)(t-BuNH(3)) (2). Slow diffusion of Me(3)SiN(3) in diethyl ether into compound in acetone produced an azido-capped half-cubane [Cp*(3)Rh(3)(mu-N(3))(3)(mu(3)-N(3))](OTf)(2) (3). On the other hand, treating 1 with Me(3)SiN(3) in acetone gave an azido-bridged, dinuclear rhodium(III) complex [Cp*Rh(mu-N(3))(OH(2))](2)(OTf)(2) (4). Complexes 2 and 3 represent the first azido- or hydroxyl-capped, incomplete cubane-type Rh clusters. Under appropriate conditions, complexes 2 and 3 could be converted to complex 4. The structures of all products were determined by X-ray diffraction.  相似文献   

16.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

17.
A series of bis(aryl) bismuth compounds containing (N,C,N)-pincer ligands, [2,6-(Me(2)NCH(2))(2)C(6)H(3)](-) (Ar'), have been synthesized and structurally characterized to compare the coordination chemistry of Bi(3+) with similarly sized lanthanide ions, Ln(3+). Treatment of Ar'(2)BiCl, 1, with ClMg(CH(2)CH═CH(2)) affords the allyl complex Ar'(2)Bi(η(1)-CH(2)CH═CH(2)), 2, in which only one allyl carbon atom coordinates to bismuth. Complex 1 reacts with KO(t)Bu and KOC(6)H(3)Me(2)-2,6 to yield the alkoxide Ar'(2)Bi(O(t)Bu), 3, and aryloxide Ar'(2)Bi(OC(6)H(3)Me(2)-2,6), 4, respectively, but the analogous reaction with the larger KOC(6)H(3)(t)Bu(2)-2,6 forms [Ar'(2)Bi][OC(6)H(3)(t)Bu(2)-2,6], 6, in which the aryloxide ligand acts as an outer sphere anion. Chloride is removed from 1 by NaBPh(4) to form [Ar'(2)Bi][BPh(4)], 5, which crystallizes from THF in an unsolvated form with tetraphenylborate as an outer sphere counteranion.  相似文献   

18.
Unsolvated, trinuclear, homometallic, rare-earth-metal multimethyl methylidene complexes [{(NCN)Ln(μ(2)-CH(3))}(3)(μ(3)-CH(3))(μ(3)-CH(2))] (NCN = L = [PhC{NC(6)H(4)(iPr-2,6)(2)}(2)](-); Ln = Sc (2a), Lu (2b)) have been synthesized by treatment of [(L)Ln{CH(2)C(6)H(4)N(CH(3))(2)-o}(2)] (Ln = Sc (1a), Lu (1b)) with two equivalents of AlMe(3) in toluene at ambient temperature in good yields. Treatment of 1 with three equivalents of AlMe(3) gives the heterometallic trinuclear complexes [(L)Ln(AlMe(4))(2)] (Ln = Sc (3a), Lu (3b)) in good yields. Interestingly, 2 can also be generated by recrystallization of 3 in THF/toluene, thereby indicating that the THF molecule can also induce C-H bond activation of 2. Reaction of 2 with one equivalent of ketones affords the trinuclear homometallic oxo-trimethyl complexes [{(L)Ln(μ(2) -CH(3))}(3) (μ(3)-CH(3))(μ(3)-O)] (Ln = Sc(4a), Lu(4b)) in high yields. Complex 4b reacts with one equivalent of cyclohexanone to give the methyl abstraction product [{(L)Lu(μ(2) -CH(3) )}(3) (μ(3) -OC(6)H(9))(μ(3)-O)] (5b), whereas reaction of 4b with acetophenone forms the insertion product [{(L)Lu(μ(2)-CH(3))}(3){μ(3)-OCPh(CH(3))(2)}(μ(3)-O)] (6b). Complex 4a is inert to ketone under the same conditions. All these new complexes have been characterized by elemental analysis, NMR spectroscopy, and confirmed by X-ray diffraction determination.  相似文献   

19.
New syntheses of complexes containing the recently discovered (N(2))(3-) radical trianion have been developed by examining variations on the LnA(3)/M reductive system that delivers "LnA(2)" reactivity when Ln = scandium, yttrium, or a lanthanide, M = an alkali metal, and A = N(SiMe(3))(2) and C(5)R(5). The first examples of LnA(3)/M reduction of dinitrogen with aryloxide ligands (A = OC(6)R(5)) are reported: the combination of Dy(OAr)(3) (OAr = OC(6)H(3)(t)Bu(2)-2,6) with KC(8) under dinitrogen was found to produce both (N(2))(2-) and (N(2))(3-) products, [(ArO)(2)Dy(THF)(2)](2)(μ-η(2):η(2)-N(2)), 1, and [(ArO)(2)Dy(THF)](2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 2a, respectively. The range of metals that form (N(2))(3-) complexes with [N(SiMe(3))(2)](-) ancillary ligands has been expanded from Y to Lu, Er, and La. Ln[N(SiMe(3))(2)](3)/M reactions with M = Na as well as KC(8) are reported. Reduction of the isolated (N(2))(2-) complex {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2)), 3, with KC(8) forms the (N(2))(3-) complex, {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 4a, in high yield. The reverse transformation, the conversion of 4a to 3 can be accomplished cleanly with elemental Hg. The crown ether derivative {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(18-crown-6)(THF)(2)] was isolated from reduction of 3 with KC(8) in the presence of 18-crown-6 and found to be much less soluble in tetrahydrofuran (THF) than the [K(THF)(6)](+) salt, which facilitates its separation from 3. Evidence for ligand metalation in the Y[N(SiMe(3))(2)](3)/KC(8) reaction was obtained through the crystal structure of the metallacyclic complex {[(Me(3)Si)(2)N](2)Y[CH(2)Si(Me(2))NSiMe(3)]}[K(18-crown-6)(THF)(toluene)]. Density functional theory previously used only with reduced dinitrogen complexes of closed shell Sc(3+) and Y(3+) was extended to Lu(3+) as well as to open shell 4f(9) Dy(3+) complexes to allow the first comparison of bonding between these four metals.  相似文献   

20.
Two systems, Ln/Sn/Se/en and Ln/Sn/Se/dien, were investigated under solvothermal conditions, and novel lanthanide selenidostannates [{Ce(en)(4)}(2)(μ-Se(2))]Sn(2)Se(6) (1a), [{Ln(en)(3)}(2)(μ-OH)(2)]Sn(2)Se(6) (Ln = Pr(1b), Nd(1c), Gd(1d); en = ethylenediamine), [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) (Ln = Ce(2a), Nd(2b)), and [Hdien][Gd(dien)(2)(μ-SnSe(4))] (2c) (dien = diethylenetriamine) were prepared and characterized. Two structural types of lanthanide selenidostannates were obtained across the lanthanide series in both systems. In the Ln/Sn/Se/en system, two types of binuclear lanthanide complex cations [Ce(2)(en)(8)(μ-Se(2))](4+) and [{Ln(en)(3)}(2)(μ-OH)(2)](4+) (Ln = Pr, Nd, Gd) were formed depending on the Ln(3+) ions. The complex cations are compensated by the [Sn(2)Se(6)](4-) anions. In the Ln/Sn/Se/dien system, coordination polymer [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) and ionic complex [Hdien][Gd(dien)(2)(μ-SnSe(4))] are obtained along the lanthanide series, among which the μ(4)-Sn(2)Se(9), μ-Sn(2)Se(6) and μ-SnSe(4) ligands to the Ln(3+) ions were observed. The formation of title complexes shows the effects of lanthanide metal size and amino ligand denticity on the lanthanide selenidostannates. Complexes 1a-2c exhibit semiconducting properties with band gaps between 2.08 and 2.48 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号