首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several configurations using 6- and 10-port switching valves were studied for high flow, on-line extraction of rat plasma coupled to an electrospray triple quadrupole mass spectrometer. Each plasma sample was diluted 1:1 with an aqueous internal standard solution. The sample was injected into a 2.1 x 20 mm cartridge column packed with 25 microm divinylbenzene/N-vinylpyrrolidone packing using 100% aqueous mobile phase at 4 mL/min. After sample loading and sample cleanup, the analytes were eluted from the extraction column with a 1.0-min gradient at 0.4 mL/min. The samples were either analyzed directly after elution from the extraction column or after additional separation using a short high performance liquid chromatography (HPLC) column. The different configurations were tested using an acidic drug (diflunisal) and a basic drug (clemastine) in rat plasma. On-line analysis was performed by injecting 200 microL of diluted plasma. The mass spectrometer was operated in the multiple reaction monitoring (MRM) mode. All calibration standards gave relative standard deviations (RSDs) below 5%. The total time per sample was 3 min.  相似文献   

2.
A high-performance liquid chromatographic method for the determination of disodium dihydrogen(cycloheptylamino)methylene-bisphosphonate monohydrate (YM175) in plasma, urine and bone is described. Plasma obtained in high-dose animal studies is pretreated by Method A, a simple method using 1 ml of plasma, which is based on deproteinization of plasma followed by coprecipitation of the drug with calcium phosphate and removal of excess calcium ions by AG 50W-X8 resin. Plasma obtained in lower-dose clinical studies is treated by Method B, a more sensitive method using 10 ml of plasma, which is based on solid-phase extraction using a Sep-Pak C18 cartridge coupled with Method A. Urine and bone are treated similarly to Method B. The chromatographic system consists of a mobile phase at pH 11, an alkali-stable column and an electrochemical detector operating in the oxidation mode. The determination limit is 5 ng/ml for Method A and 0.5 ng/ml for Method B in plasma, 1 ng/ml in urine, and 25 ng/g in bone.  相似文献   

3.
Hsieh Y  Brisson JM  Ng K  White RE  Korfmacher WA 《The Analyst》2001,126(12):2139-2143
A polymer-coated mixed-function (PCMF) column was evaluated for direct plasma injection for the simultaneous determination of a drug candidate and its hydroxyl metabolite by high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS-MS) in support of pharmacokinetic studies. Each diluted monkey plasma sample containing internal standard was directly injected on to the PCMF column for sample clean-up, enrichment and chromatographic separation. The proteins and macromolecules were first eluted from the column while the drug molecules were retained on the bonded hydrophobic phase. The analytes retained on the column were then eluted with a strong mobile phase using a gradient separation technique at a constant flow rate of 1.0 ml min(-1). When not diverted, the column effluent was connected either to the atmospheric pressure chemical ionization (APCI) source or the electrospray ionization (ESI) source as part of the mass spectrometer system used for quantification. The calibration curve was linear over the range 5-2500 ng ml(-1) for both analytes. The retention times for the analytes and the internal standard were both consistent and no column deterioration was observed for at least 500 injections. The recovery through the column and reproducibility of the dosed compound and its hydroxyl metabolite in monkey plasma samples were > 90% (RSD < 6%). The total analysis time was < 8 min per sample. The analytical results obtained by the proposed direct plasma injection method were in good agreement with those obtained by the conventional LC-MS-MS method.  相似文献   

4.
A sensitive, efficient, high throughput, direct injection bioanalytical method based on a single column and high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) was developed for pharmacokinetic analysis of early drug discovery compounds in plasma samples. After mixing with a working solution containing an internal standard each plasma sample was directly injected into a polymer-coated mixed-function column for sample cleanup, enrichment and chromatographic separation. The stationary phase incorporates hydrophilic polyoxyethylene groups and hydrophobic groups to the polymer-coated silica. This allows proteins and macromolecules to pass through the column due to restricted access to the surface of the packing while retaining the drug molecules on the bonded hydrophobic phase. The analytes retained in the column with a largely aqueous liquid mobile phase were then chemically separated by switching to a strong organic mobile phase. The column effluent was diverted from waste to the mass spectrometer for analyte detection. Within 200 plasma sample injections the response ratio (analyte vs. internal standard, %CV = 4.6) and the retention times for analyte and internal standard were found consistent and no column deterioration was observed. The recoveries of test compound in various plasma samples were greater than 90%. The total analysis time was 相似文献   

5.
The nonapeptide hormones arginine vasopressin (CYFQNCPRG-NH2, AVP) and oxytocin (CYIQNCPLG-NH2, OT), control many essential functions in mammals. Their main activities include the urine concentration (via stimulation of AVP V2 receptors, V2R, in the kidneys), blood pressure regulation (via stimulation of vascular V1a AVP receptors, V1aR), ACTH control (via stimulation of V1b receptors, V1bR, in the pituitary) and labor and lactation control (via stimulation of OT receptors, OTR, in the uterus and nipples, respectively). All four receptor subtypes belong to the GTP-binding (G) protein-coupled receptor (GPCR) family. This work consists of docking of YM087, a potent non-peptide V1aR and V2R – but not OTR – antagonist, into the receptor models based on relatively new theoretical templates of rhodopsin (RD) and opiate receptors, proposed by Mosberg et al. (Univ. of Michigan, Ann Arbor, USA). It is simultaneously demonstrated that this RD template satisfactorily compares with the first historical GPCR structure of bovine rhodopsin (Palczewski et al., 2000) and that homology-modeling of V2R, V1aR and OTR using opiate receptors as templates is rational, based on relatively high (20–60%) sequence homology among the set of 4 neurophyseal and 4 opiate receptors. YM087 was computer-docked to V1aR, V2R and OTR using the AutoDock (Olson et al., Scripps Research Institute, La Jolla, USA) and subsequently relaxed using restrained simulated annealing and molecular dynamics, as implemented in AMBER program (Kollman et al., University of California, San Francisco, USA). From about 80 diverse configurations, sampled for each of the three ligand/receptor systems, 3 best energy-relaxed complexes were selected for mutual comparisons. Similar docking modes were found for the YM087/V1aR and YM087/V2R complexes, diverse from those of the YM087/OTR complexes, in agreement with the molecular affinity data.  相似文献   

6.
A fully automated gradient high-performance liquid chromatographic method for the determination of isotretinoin, tretinoin and their 4-oxo metabolites in plasma was developed, using the column-switching technique. After dilution with an internal standard solution containing 20% acetonitrile, 0.5 ml of the sample was injected onto a precolumn (17 X 4.6 mm I.D.), filled with C18 Corasil 37-53 micron. Proteins and polar plasma components were washed out using 1% ammonium acetate-acetonitrile (9:1, v/v) as mobile phase 1. After valve switching, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm by UV detection. Using two coupled reversed-phase columns (125 mm long), the separation of cis and trans isomers was possible, and all four compounds could be quantified down to 2 ng/ml of plasma. The inter-assay precision in the concentration range 20-100 ng/ml was between 1.0 and 4.7% for all compounds.  相似文献   

7.
An automated high-performance liquid chromatographic (HPLC) column-switching system is described for the analysis of medroxalol, a potential antihypertensive agent, in plasma. The HPLC system uses two six-port switching valves with a Corasil C18 short pre-column for an on-line sample clean-up and an SGE ODS analytical column for separation. Plasma samples were diluted with a phosphate buffer (pH 7.2) containing an internal standard and aliquots were injected directly on the HPLC system. The column-switching system was applicable to continuous analysis of hundreds of plasma samples since this technique provided very efficient on-line sample clean-up and regenerated the pre-column effectively. Results were in good agreement and the total analysis time was one third that of an alternative method.  相似文献   

8.
Summary Turbulent flow chromatography coupled to tandem mass spectrometry (TFC-MS-MS) has recently emerged as a potentially fast, sensitive and specific technique for the direct analysis of pharmaceutical compounds from crude plasma. TFC-MS-MS removes the need for time-consuming sample preparation procedures such as solid-phase extraction (SPE) or liquid-liquid extraction (LLE). A relatively high flow rate combined with the use, of an HPLC column with large porous particles allows the on-line clean up and quantification of compounds in plasma samples. Until, now, the amount of plasma directly injected into TFC systems has rarely exceeded 30 μL in order to prevent rapid column degradation. Increasing the injection volume also induces high carry-over levels, particularly for drugs with basic and/or lipophilic properties. This paper describes the first genetic TFC-MS-MS method developed in a 96-well format, which allows the direct injection of 200 μL of 1∶1 diluted plasma (equivalent to 100 μL neat plasma). An average, of 390 injections was carried out with each extraction column. More than 2000 dog plasma samples were injected into the system without any sign of carryover. The method was fully validated over a 5–500 ng mL−1 range for three basic compounds: doxazosin, CP122,288 and dofetilide. The imprecision was 1.2 to 8.3% for doxazosin, 1.5 to 4% for CP122,288 and 1.6 to 9.2% for dofetilide. The inaccuracy ranged from 6% to 7.9%. This generic methodology was then used to assay two structurally unrelated development compounds, showing that the method accuracy and sensitivity were adequate for the early pharmacokinetic (PK) studies in animals.  相似文献   

9.
A high-performance liquid chromatographic method with fluorescence detection was developed for the determination of (S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride (YM992) in plasma. Plasma samples were extracted with n-hexane under alkali condition. After the organic solvent was evaporated to dryness, the residue was treated with 4-fluoro-7-nitrobezofurazan (NBD-F) in borate buffer (pH 7.5) at room temperature for 20 min. The reaction was terminated with hydrochloric acid and the resultant solution was injected onto HPLC without further purification. No interfering peak was observed at the retention time of YM992 or the internal standard. The calibration curve was linear with the concentration of YM992 up to 200 ng/ml. The limit of quantitation was 1 ng/ml. The intra- and inter-day relative standard deviation was less than 5.6% and 4.1%, respectively, and the intra- and inter-day relative error ranged from -3.0% to 17.2% and 2.8% to 7.5%, respectively. Using the assay, the plasma concentration of YM992 could be determined up to 8 and 10 h after the oral administration of YM992 to rats and dogs, respectively.  相似文献   

10.
A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week.  相似文献   

11.
A simple and rapid technique for the simultaneous isolation and analysis of folate monoglutamates (folic acid, 7,8-dihydrofolic acid, 5,6,7,8-tetrahydrofolic acid and 5-formyl-, 5-methyl- and 10-formyl-5,6,7,8-tetrahydrofolic acids) was developed using reversed-phase high-performance liquid chromatography with an automatic precolumn-switching system. The plasma or the dissolved diet samples were directly injected onto a short precolumn flushed with 50 mM phosphate buffer. The folate vitamers absorbed on the precolumn were backflushed onto the analytical column with a 25 mM phosphate buffer containing 5% methanol and then detected by UV absorption at 280 nm. A linear response was found between the injected sample amounts and the integrated areas for all vitamers analysed. The detection limit was 1-10 pmol and the precision ranged from 1.6 to 10%, depending on the metabolite studied. The recovery rates of folates in plasma were 90-95%. Decomposition of the unstable folates was avoided. Our method was applied to the analysis of mouse plasma and animal diets.  相似文献   

12.
The presented paper deals with a new methodology for direct determination of propranolol in human plasma. The methodology described is based on sequential injection analysis technique (SIA) coupled with solid phase extraction (SPE) column based on restricted access materials (RAM). Special RAM column containing 30 μm polymeric material—N-vinylacetamide copolymer was integrated into the sequential injection manifold. SIA–RAM system was used for selective retention of propranolol, while the plasma matrix components were eluted with two weak organic solutions to waste.

Due to the acid–basic and polarity properties of propranolol molecule and principles of reversed-phase chromatography, it was possible to retain propranolol on the N-vinylacetamide copolymer sorbent (Shodex MSpak PK-2A 30 μm (2 mm × 10 mm)). Centrifuged plasma samples were aspirated into the system and loaded onto the column using acetonitrile–water (5:95, v/v), pH 11.00, adjusted by triethylamine. The analyte was retained on the column while proteins contained in the sample were removed to waste. Interfering endogenous substances complicating detection were washed out by acetonitrile–water (15:85), pH 11.00 in the next step. The extracted analyte was eluted by means of tetrahydrofuran–water (25:75), pH 11.00 to the fluorescence detector (emission filter 385 nm). The whole procedure comprising sample pre-treatment, analyte detection and column reconditioning took about 15 min. The recoveries of propranolol from undiluted plasma were in the range 96.2–97.8% for three concentration levels of analyte. The proposed SIA–RAM method has been applied for direct determination of propranolol in human plasma.  相似文献   


13.
This paper describes a sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of the novel survivin suppressant YM155, 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium, which is developed for the treatment of solid tumors. This method uses a liquid-liquid extraction from 0.25 mL of dog plasma. LC separation was carried out on a Genesis Silica column (50 mm x 3.0 mm i.d.) at a flow-rate of 0.5 mL/min. Compounds were eluted using a mobile phase of 5 mm ammonium acetate and 0.1% formic acid in water-0.1% formic acid in acetonitrile, 17:83 (v/v). MS/MS detection was carried out with an MDS-Sciex API3000 triple quadrupole mass spectrometer in positive electrospray ionization mode. The standard curve was linear from 0.05 to 50 ng/mL (r > or = 0.9968). The lower limit of quantitation was 0.05 ng/mL. Good intra- and inter-day assay precision (within 7.4% RSD) and accuracy (within +/-12.3%) were obtained. The extraction recovery was 66.2%. The method was successfully applied to preclinical pharmacokinetic studies in dogs.  相似文献   

14.
A specific HPLC method for the simultaneous determination of YM928, a novel noncompetitive AMPA receptor antagonist, and its demethylated metabolite (YM-58875) in rat, dog and monkey plasma was developed and validated. The method utilized multiple-step liquid-liquid extraction followed by a reversed-phase HPLC with UV detection at 275 nm. No interfering peaks were observed at the retention times of YM928, YM-58875 or internal standard. The validated quantitation range was 5-5000 ng/mL for both YM928 and YM-58875 when 1 mL of the plasma sample was used. The intra- and inter-day precision was less than 5.3 and 2.5% for YM928, and 3.7 and 2.3% for YM-58875, respectively. The intra- and inter-day accuracies were -8.7-5.3% and 0.7-1.9% for YM928, and -10.0-6.1% and 1.3-3.4% for YM-58875, respectively. The mean recoveries in the extraction process were 52.7-62.8%. The utility of this analytical method was demonstrated by the investigation of the pharmacokinetics of the unchanged drug and its metabolite in preclinical studies.  相似文献   

15.
Nanoliter high‐performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high‐performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high‐pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high‐performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high‐performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9–1.8 μg/L were obtained with precisions variable in the range of 1.6–4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87–102%).  相似文献   

16.
Nakazato T  Tao H  Taniguchi T  Isshiki K 《Talanta》2002,58(1):121-132
This paper describes a robust and sensitive method for the determination of arsenic species in seawater by ion-exclusion liquid chromatography (LC) combined with inductively coupled plasma mass spectrometry (ICP-MS) using reaction cell and hydride generation (HG) techniques. A good separation of arsenite, arsenate, and monomethylarsonic acid was achieved using an ion-exclusion column packed with a sulfonated polystyrene resin and a dilute nitric acid at pH 2.0 as the eluent, even when a large volume, i.e. 200 mul, of seawater samples containing a large amount of matrix was repeatedly injected. Separations of the chloride ion due to the matrix and arsenic species were partially performed; however, the extensive peak of ArCl due to high content of Cl(-) in a sample overlapped peaks of the three arsenic species on (75)As measurement by ICP-MS. This ArCl polyatomic interference was efficiently eliminated by collision of ArCl molecules with helium in an octopole reaction cell which was introduced prior to a mass spectrometer. Detection limits of the three arsenic species in a sample containing 2% Cl(-), the concentration of which is comparable to that in a seawater sample, by LC-ICP-MS with the octopole reaction system (ORS), ranged from 21 to 25 pg As ml(-1); these values were three-six times lower than those by LC-ICP-MS without ORS. As another technique for ArCl interference elimination, HG prior to ICP-MS was also successfully used not only to reduce the interference but also to improve the detection limits to 3.4-4.5 pg As ml(-1). The developed LC-ICP-ORS-MS and LC-HG-ICP-MS were validated by analyzing a certified reference material (CRM) of seawater. In addition, no serious decrease in analytical performance of present methods was observed in the experimental periods of half a year for LC-ICP-ORS-MS and 1 year for LC-HG-ICP-MS, respectively. The latter method was successfully applied to characterize seasonal variations of three arsenic species in deep seawater and surface seawater.  相似文献   

17.
A high-throughput bioanalytical method based on automated sample transfer, automated solid phase extraction, and fast liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis, has been developed for the determination of the analgesic fentanyl in human plasma. Samples were transferred into 96-well plates using an automated sample handling system. Automated solid phase extraction (SPE) was carried out using a 96-channel programmable liquid-handling workstation using a mixed-mode sorbent. The extracted samples were then dried down, reconstituted and injected onto a silica column using an aqueous/organic mobile phase with tandem mass spectrometric detection. The method has been validated over the concentration range 0.05-100 ng/mL fentanyl in human plasma, based on a 0.25-mL sample size. The assay is sensitive, specific and robust. More than 2000 samples have been analyzed using this method. The automation of the sample preparation steps not only increased the analysis throughput, but also facilitated the transfer of the method between different bioanalytical laboratories of the same organization.  相似文献   

18.
A simple, sensitive, selective and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of atorvastatin and its active metabolites ortho-hydroxyatorvastatin and para-hydroxyatorvastatin in human plasma using rosuvastatin as internal standard (IS). Following simple liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 559/440 for atorvastatin, m/z 575/466 for ortho-hydroxyatorvastatin, m/z 575/440 for para-hydroxyatorvastatin and m/z 482/258 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for atorvastatin and its two metabolites in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of atorvastatin, ortho-hydroxyatorvastatin, para-hydroxyatorvastatin and the IS from spiked plasma samples were 54.2 +/- 3.2, 50.1 +/- 3.8, 65.2 +/- 3.6 and 71.7 +/- 2.7%, respectively. A run time of 2.5 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

19.
Direct injection versus liquid-liquid extraction for post-dose human plasma sample analysis by high performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) have been studied using a drug candidate compound. For the direct-injection method, an Oasis(R) HLB column (1 x 50 mm, 30 micrometer) was used as the on-line extraction column and a conventional Waters symmetry C18 column (3.9 x 50 mm, 5 micrometer) was used as the analytical column. Each plasma sample (100 microL) was mixed with 100 microL of a working solution of the internal standard in aqueous 0.05 M ammonium acetate (pH 6.9), and portions (10 microL) of these samples were then injected into the LC/MS/MS system. For the liquid-liquid extraction method, a YMC Basic C18 column (2.0 x 50 mm, 5 micrometer) was used as the analytical column. Each sample (0.5 mL) was extracted with methyl tert-butyl ether and the extract was reconstituted and injected into the LC/MS/MS system. The total analysis time for both methods was 2.0 min per sample. The accuracy, inter-day precision and intra-day precision obtained from the quality control samples were within 8% for both methods. The analysis results of post-dose human plasma samples showed that the deviations of 91% of the concentrations obtained using the direct-injection method were within +/-20% from the concentrations obtained using the liquid-liquid extraction method, and the overall average percentage deviation was -1.5%. The results showed that the two methods were equivalent in terms of total chromatographic run time, accuracy and precision. However, for a batch of 100 samples, the sample preparation time for the direct-injection method was only about 25% of the time required for liquid-liquid extraction. This decrease in sample preparation time resulted in the doubling of the overall sample analysis throughput.  相似文献   

20.
Inter- and intra-individual variability of the loratadine (LOR) metabolism in Caucasian subjects was assessed during a bioequivalence study for two pharmaceutical formulations (solid oral dosage forms) containing 10 mg of the active substance. The analytical data were obtained by applying a reliable, low-cost and sensitive ion pair liquid chromatography/fluorescence (IPLC/FLD) method for determination of both loratadine and descarboethoxyloratadine (DCL) in human plasma samples. The sample preparation procedure is based on liquid-liquid extraction of the target analytes from alkalinized plasma using diethyl-ether. The separation of the analytes and 8-chloroazatadine as internal standard (IS) was achieved through an isocratic ion pair (IP) elution on a Purospher((R)) STAR RP-18 column. The mobile phase containing sodium dodecyl sulfate (SDS) as ion pairing agent was pumped at a flow rate of 1 mL/min. Fluorescence detection (FLD) was achieved at 280 nm (excitation) and 440 nm (emission) wavelengths. The increased sensitivity of the method is also based on a large sample injected volume (250 microL). Linear response was found over the 0.5-20 ng/mL concentration interval for both target compounds. Low limits of quantification (LLOQ) around 0.3 ng/mL were found for LOR and DCL. Method validation is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号