首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive, selective, specific and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric assay method was developed and validated for the simultaneous quantitation of alpha-,beta-arteether (alpha-,beta-AE) and its metabolite alpha-dihydroartemisinin (DHA) in monkey plasma using the propyl ether analogue of beta-arteether (PE) as an internal standard. The method involves a simple two-step liquid-liquid extraction with hexane. The analytes were chromatographed on a C(18) reversed-phase chromatographic column by isocratic elution with methanol-ammonium acetate buffer (pH 4) (92 : 8, v/v) and analysed by mass spectrometry in the multiple reaction monitoring mode. The chromatographic run time was 7 min and the weighted (1/x(2)) calibration curves were linear over the range 0.78-200 ng ml(-1). The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability and re-injection reproducibility. The limit of detection and lower limit of quantification in monkey plasma were 0.39 and 0.78 ng ml(-1) respectively for all the analytes. The intra- and inter-batch precision and accuracy were found to be well within acceptable limits (<15%). All three analytes were stable even after three freeze-thaw cycles (deviation < 15%). The average absolute recoveries of alpha-,beta-AE, DHA and PE, used as an internal standard, from spiked plasma samples were 85.85 +/- 6.56, 70.10 +/- 7.06, 54.37 +/- 3.39 and 93.90 +/- 6.9%, respectively. The assay method described here could be applied to study the pharmacokinetics of alpha-,beta-AE and DHA in rhesus monkeys.  相似文献   

2.
A reversed-phase, two-dimensional, liquid chromatographic method incorporating column switching and electrochemical detection was used for the direct analysis of the dopamine (D2) agonist (-)-2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin hydrochloride in plasma. Sample work-up consisted of addition of internal standard, filtration, then direct injection of the plasma sample onto an internal surface reversed-phase (ISRP) guard column where the dopamine agonist and internal standard were separated from plasma proteins. An automated pneumatic valve was then used to switch to a stronger eluent which stripped the retained substances from the ISRP support onto a C18 analytical column where the analytes were separated from endogenous biological interferences. A dual-electrode electrochemical detector was used to minimize interferences and provide the desired sensitivity. The method has a detection limit of 1.5 ng/ml and requires a total assay time of 20 min per plasma sample. The method is linear from 1.5 to 1000 ng/ml and yielded greater than 80% drug recovery for plasma concentrations greater than 10 ng/ml. Precision for the method at 100 ng/ml yielded a relative standard deviation of 4.4%. Reproducibility was within 6.5% on a 20 ng/ml spiked plasma sample assayed on different days by different people. The method has successfully been applied to human plasma samples and for pharmacokinetic studies in rats and monkeys.  相似文献   

3.
A rapid, sensitive and robust assay procedure using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the determination of famotidine in human plasma and urine is described. Famotidine and the internal standard were isolated from plasma samples by cation-exchange solid-phase extraction with benzenesulfonic acid (SCX) cartridges. The urine assay used direct injection of a diluted urine sample. The chromatographic separation was accomplished by using a BDS Hypersil silica column with a mobile phase of acetonitrile-water containing trifluoroacetic acid. The MS/MS detection of the analytes was set in the positive ionization mode using electrospray ionization for sample introduction. The analyte and internal standard precursor-product ion combinations were monitored in the multiple-reaction monitoring mode. Assay calibration curves were linear in the concentration range 0.5--500 ng ml(-1) and 0.05--50 microg ml(-1) in plasma and urine, respectively. For the plasma assay, a 100 microl sample aliquot was subjected to extraction. To perform the urine assay, a 50 microl sample aliquot was used. The intra-day relative standard deviations at all concentration levels were <10%. The inter-day consistency was assessed by running quality control samples during each daily run. The limit of quantification was 0.5 ng ml(-1) in plasma and 0.05 microg ml(-1) in urine. The methods were utilized to support clinical pharmacokinetic studies in infants aged 0-12 months.  相似文献   

4.
A sensitive, efficient, high throughput, direct injection bioanalytical method based on a single column and high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) was developed for pharmacokinetic analysis of early drug discovery compounds in plasma samples. After mixing with a working solution containing an internal standard each plasma sample was directly injected into a polymer-coated mixed-function column for sample cleanup, enrichment and chromatographic separation. The stationary phase incorporates hydrophilic polyoxyethylene groups and hydrophobic groups to the polymer-coated silica. This allows proteins and macromolecules to pass through the column due to restricted access to the surface of the packing while retaining the drug molecules on the bonded hydrophobic phase. The analytes retained in the column with a largely aqueous liquid mobile phase were then chemically separated by switching to a strong organic mobile phase. The column effluent was diverted from waste to the mass spectrometer for analyte detection. Within 200 plasma sample injections the response ratio (analyte vs. internal standard, %CV = 4.6) and the retention times for analyte and internal standard were found consistent and no column deterioration was observed. The recoveries of test compound in various plasma samples were greater than 90%. The total analysis time was 相似文献   

5.
A novel restricted access cation exchanger with sulphonic acid groups at the internal surface was proven to be highly suitable in the sample clean up of peptides on-line coupled to HPLC-electrospray ionization (ESI)-MS. Neuropeptide Y (NPY) and several of its fragments in plasma were subjected to the sample clean-up procedure. The peptides were eluted by a step gradient from the restricted access column, applying 10 mM phosphate buffer pH 3.5 from 5 to 20% (v/v) of acetonitrile with 1 M NaCl and transferred to a Micra ODS II column (33x4.6 mm). The separation of the peptides and their fragments was performed by a linear gradient from 20 to 60% (v/v) acetonitrile in water with 0.1% formic acid and 0.01% trifluoroacetic acid in 4 min at a flow-rate of 0.75 ml/min. An integrated and completely automated system composed of sample clean up-HPLC-ESI-MS was used to analyze real life samples. The sample volumes ranged between 20 and 100 microl. Peaks due to the fragments NPY 1-36, 3-36 and 13-36 in porcine plasma were identified by ESI-MS. The limit of detection was in the 5 nmol/ml range. The total analysis required 21 min and allowed the direct injection of plasma.  相似文献   

6.
This work describes how gel permeation chromatography (GPC) can be used for sample clean-up to reduce the fouling of the column in an automated on-column injector. The analytes were isolated from plasma together with the internal standard (isomannide dinitrate) by liquid-liquid extraction on Extrelut silica columns. The extracts were evaporated and reconstituted in tetrahydrofuran for separation of the analytes from non-volatile plasma components by GPC on a styrene-divinylbenzene column with 100 A pore size. A programmable autosampler with an additional three-way valve was used for injection and fraction collection. The molecular weight fraction between 100 and 700 a.m.u. was collected and transferred to the on-column autosampler for capillary gas chromatography on a 30-m column butt-connected to a 0.2-m pre-column. The pre-column was replaced after 50 sample injections. When the GPC purification was excluded from the work-up procedure a deposit of non-volatile components was formed at the injection zone of the pre-column which resulted in excessive peak-tailing after only five or six injections of plasma extract. The limit of determination was 0.2 ng/ml plasma for isosorbide dinitrate and 0.4 ng/ml for the mononitrates.  相似文献   

7.
A sensitive high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (MS/MS) method was developed and validated for the simultaneous quantification of trandolapril and its metabolite trandolaprilat in human plasma using ramipril as an internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M-H]- ions, m/z 429/168 for trandolapril, m/z 401/168 for trandolaprilat and m/z 415/166 for the internal standard. The method exhibited a linear dynamic range of 20-10,000 pg/mL for both trandolapril and trandolaprilat in human plasma. The lower limit of quantification was 20 pg/mL for both trandolapril and its metabolite. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

8.
A high-throughput bioanalytical method for simultaneous quantitation of pravastatin and its metabolite (M1) in human serum was developed and validated using on-line extraction following liquid chromatography tandem mass spectrometry (LC-MS/MS). The on-line extraction was accomplished by the direct injection of a 50 microL serum sample, mixed 4:1 with an aqueous internal standard solution, into one of the extraction columns with aqueous 1 mm formic acid at flow rate of 3 mL/min. The separation and analysis were achieved by back-eluting the analytes from the extraction column and the analytical column to the mass spectrometer with an isocratic mobile phase consisting of 62% aqueous 1 mm formic acid and 38% acetonitrile at a flow rate of 0.8 mL/min. The second extraction column was being equilibrated while the first column was being used for analysis, and vice versa. The standard curve range was 0.500-100 ng/mL for pravastatin and M1. The lower limit of quantitation, 0.500 ng/mL for all the analytes, was achieved when 50 microL of human serum was used. The intra- and inter-day precisions were within 7.4%, and the accuracy was between 95 and 103%. The on-line extraction was finished in 0.5 min and total analysis time was 2.5 min per sample.  相似文献   

9.
Besides liquid chromatographic (LC)/UV methods adapted to therapeutic drug monitoring, there is still a need for more powerful techniques that can be used for pharmacological research and clinical purposes. We developed an LC method coupled with tandem mass spectrometry (MS/MS) to separate, detect and quantify with high sensitivity the nucleoside analogues used in multitherapies (zidovudine, stavudine, zalcitabine, didanosine, lamivudine and abacavir) in plasma and in the intracellular medium. We worked on two essential issues: (i) the need to use two ionization modes in order to achieve the best sensitivity, which leads to the optimization of the chromatographic separation of drugs detected in the positive ionization mode and drugs detected in the negative ionization mode, and (ii) the need to optimize the extraction step in order to enhance sample recovery. The peripheral blood mononuclear cells were lysed in Tris buffer-MeOH. A clean-up procedure was performed by solid-phase extraction only for plasma samples. The LC separation was carried out on a Zorbax Stable Bond C(18) column followed by MS/MS analysis after electrospray ionization in either the negative or positive mode. The positive ionization mode was applied at the beginning of the run to detect zalcitabine and lamivudine, then the ionization mode was changed to negative for the detection of didanosine, stavudine, internal standard and zidovudine. The calibration range for all the analytes was 0.5-200 ng ml(-1). The recoveries were between 64 and 90%, with coefficients of variation (CVs) lower than 15%. The inaccuracy (bias) was +/-15% with CVs always lower than 12%. The analytes were stable at room temperature and in the extraction solvent for at least 24 h, after storage at -80 degrees C for 3 months, after three freeze-thaw cycles and in the injection solvent after 48 h at 4 degrees C. Together with the measurement of intracellular triphosphorylated metabolites thanks to the powerful plasma and intracellular assay method for intact drugs, it is possible to describe the behaviour of nucleoside analogues against HIV through plasma pharmacokinetics, cell membrane diffusion including drug transport involvement, and also the intracellular metabolism.  相似文献   

10.
A sensitive and high-throughput LC-MS-MS method was developed for simultaneous determination of nitrendipine (NIT) and its major metabolite, dehydronitrendipine (DNIT) in human plasma using nifedipine as the internal standard. Plasma samples were prepared based on a simple liquid-liquid extraction. The extracted samples were analyzed on a Zorbax SB C(18) column interfaced with a triple quadrupole tandem mass spectrometer. Positive atmospheric pressure chemical ionization was employed as the ionization source. The analytes were detected by use of selected reaction monitoring mode. Standard curves were linear (r > or = 0.995) over the concentration range of 0.4-40 ng/mL for NIT and 0.2-20 ng/mL for DNIT. The intra- and inter-run precision was measured to be below 8.5% for NIT and DNIT. The inter-run accuracy was less than 4% for the analytes. The overall extraction recoveries of NIT and DNIT were determined to be about 75% and 78% on average, respectively. The chromatographic run time was approximately 3 min. More than 120 samples could be assayed daily with this method, including sample preparation, data acquisition and processing. The method developed was successfully used to investigate plasma concentrations of NIT and DNIT in a pharmacokinetic study of volunteers who received NIT orally.  相似文献   

11.
A simple and rapid method using liquid chromatography-mass spectrometry was developed and applied to determine the concentration of huperzine A in rat plasma or cerebrospinal fluid following a single intravenous injection or nasal administration. The chromatographic separation of the analytes was performed by column switching. A Zorbax SB-C18 pre-column was used as the first column for sample clean-up, and then the analytes were eluted onto a Zorbax SB-C18 column, the second column, and detected by electrospray ionization MS using single ion monitoring in positive mode. Hup B was used as internal standard. Linear calibration curve was achieved over a dynamic range of 0.5–500 ng mL?1 for Hup A in plasma sample and 0.5–200 ng mL?1 in CSF sample. The inter- and intra-assay coefficients of variation for the analysis were within ±6.67%. The mean absolute recoveries of Hup A from plasma were between 94.7 and 106.7%.  相似文献   

12.
Vlase L  Leucuta SE  Imre S 《Talanta》2008,75(4):1104-1109
A new simple, sensitive and selective liquid chromatography coupled with mass spectrometry (LC/MS) method for quantification of tramadol and its active metabolite O-desmethyltramadol in human plasma was validated. The tramadol and its metabolite were separated on a reversed phase column (Zorbax SB-C18, 100 mm x 3.0 mm I.D., 3.5 microm) under isocratic conditions using a mobile phase of a 10:90 (v/v) mixture of acetonitrile and 0.2% (v/v) trifluoroacetic acid in water. The flow rate was 1 ml/min at the column temperature 45 degrees C. In these chromatographic conditions, the retention times were 2.3 min for O-desmethyltramadol and 3.5 min for tramadol, respectively. The detection of both analytes was in SIM mode using an ion trap mass spectrometer with electrospray positive ionisation. The monitored ions were m/z 264 for tramadol and m/z 250 for its metabolite. The sample preparation was very simple and rapid and consisted in plasma protein precipitation from 0.2 ml plasma using 0.2 ml solution of perchloric acid 7%. Calibration curves were generated over the range of 2-300 ng/ml for both analytes with values for coefficient of correlation greater than 0.998 and by using a weighted (1/y) quadratic regression. The values of precision and accuracy for tramadol at quantification limit were less than 10.9% and 5.1, respectively, both for within- and between-run. For O-desmethyltramadol, precision and accuracy at quantification limit were 10.1% and -9.9% for within-run determinations and 6.7% and 10.4% for between-run determinations, respectively. The mean recovery for both analytes was 96%. Both tramadol and its metabolite demonstrated good short-term, long-term, post-preparative and freeze-thaw stability. This is the first reported method for analysis of tramadol and O-desmethyltramadol in human plasma that uses protein precipitation as sample processing procedure. The method is very simple and allows obtaining a very good recovery of both analytes. The validated LC/MS method has been applied to a pharmacokinetic study of 50 mg tramadol tablets on healthy volunteers.  相似文献   

13.
A high-throughput liquid chromatography/tandem mass spectrometry (LC/MS/MS) method, which combines on-line sample extraction through turbulent flow chromatography with a monolithic column separation, has been developed for direct injection analysis of drugs and metabolites in human plasma samples. By coupling a monolithic column into the system as the analytical column, the method enables running 'dual-column' extraction and chromatography at higher flow rates, thus significantly reducing the time required for the transfer and mixing of extracted fraction onto the separation column as well as the time for gradient separation. A strategy of assessing and reducing the matrix suppression effect on the on-line extraction LC/MS/MS has also been discussed. Experiments for evaluating the resolution, peak shape, sensitivity, speed, and matrix effect were conducted with dextromethorphan and its metabolite dextrorphan as model compounds in human plasma matrix. It was demonstrated that the total run time for this assay with a baseline separation of two analytes is less than 1.5 min.  相似文献   

14.
A quantitative method for the simultaneous high-performance liquid chromatographic (HPLC) resolution and determination of the enantiomers of 5-dimethylsulphamoyl-6,7-dichloro-2,3-dihydrobenzofuran-2-carboxyl ic acid, a new diuretic, and its N-monodemethylated metabolite in monkey plasma and urine is described. The method includes diethyl ether extraction of the samples and S-(-)-alpha-methylbenzylamide derivatization of the extract, followed by reversed-phase solid-phase extraction and injection of the resulting diastereoisomers onto a reversed-phase HPLC column. Baseline separation was obtained. The assay showed linearity over the range 0.1-50 micrograms/ml of plasma and 0.25-500 microliters of urine, with a lower limit of detection of ca. 0.01 micrograms/ml for each of the enantiomers. The method is adequate for pharmacokinetic and enantioselective disposition studies of both the diuretic and its metabolite.  相似文献   

15.
A detailed procedure for the analysis of four beta-blockers, acebutolol, labetalol, metoprolol and propranolol, in human plasma by high-performance liquid chromatography (LC)-tandem mass spectrometry (MS-MS) using an MSpak GF column, which enables direct injection of crude plasma samples, is presented. Protein and/or macromolecule matrix compounds were eluted first from the column, while the drugs were retained on the polymer stationary phase of the MSpak GF column. The analytes retained on the column were then eluted into an acetonitrile-rich mobile phase using a gradient separation technique. All drugs showed base peak ions due to [M + H]+ ions by LC-MS with positive ion electrospray ionization, and the product ions were produced from each [M + H]+ ion by LC-MS-MS. Quantification was performed by selected reaction monitoring. The recoveries of the four beta-blockers spiked into plasma were 73.5-89.9%. The regression equations for all compounds showed excellent linearity in the range 10-1000 ng/mL of plasma, with the exception of propranolol (10-800 ng/mL). The limits of detection and quantification for each drug were 1-3 and 10 ng/mL, respectively, of plasma. The intra- and inter-day coefficients of variation for all drugs in plasma were not greater than 10.9%.  相似文献   

16.
Ramoplanin is a novel glycolipodepsipeptide antibiotic, currently undergoing clinical trials. This method describes the determination of ramoplanin by direct injection of human urine into a coupled-column liquid chromatographic system. An internal-surface reversed-phase column has been used for on-line sample clean-up and enrichment. Analytical separation of ramoplanin and MDL 62,456 used as internal standard, has been achieved on a ABZ+ reversed-phase column with ammonium acetate buffer-acetonitrile-methanol according to a gradient profile. Analytes were detected by their UV absorbance at 270 nm. The limit of quantitation was 0.1 microgram/ml urine and the limit of detection was found to be 0.035 microgram/ml, corresponding to 13.7 pmol/ml. Linearity was determined in the range 0.1-2 micrograms/ml. Precision (relative standard deviation) ranged from 0.71 to 8.75% and the accuracy from -9.9 to 11.6%. Different human sources were tested and no interference between analytes and urine constituents was observed. The method is simple and rapid, requiring a total analysis time of 35 min per sample and reaching greater selectivity and accuracy than microbiological assays.  相似文献   

17.
Several configurations using 6- and 10-port switching valves were studied for high flow, on-line extraction of rat plasma coupled to an electrospray triple quadrupole mass spectrometer. Each plasma sample was diluted 1:1 with an aqueous internal standard solution. The sample was injected into a 2.1 x 20 mm cartridge column packed with 25 microm divinylbenzene/N-vinylpyrrolidone packing using 100% aqueous mobile phase at 4 mL/min. After sample loading and sample cleanup, the analytes were eluted from the extraction column with a 1.0-min gradient at 0.4 mL/min. The samples were either analyzed directly after elution from the extraction column or after additional separation using a short high performance liquid chromatography (HPLC) column. The different configurations were tested using an acidic drug (diflunisal) and a basic drug (clemastine) in rat plasma. On-line analysis was performed by injecting 200 microL of diluted plasma. The mass spectrometer was operated in the multiple reaction monitoring (MRM) mode. All calibration standards gave relative standard deviations (RSDs) below 5%. The total time per sample was 3 min.  相似文献   

18.
In this paper, the on-line coupling of solid-phase extraction, based on a restricted-access support with high-performance reverse phase chromatography for the analysis of carbamazepine (CBZ) and carbamazepine-10,11-epoxide (CBZ-E) in human plasma samples is described. A precolumn packed with 25 mum C(18) alkyl-diol support is used for direct plasma injection. Using column-switching techniques, the analytes were enriched on the precolumn by a 5 mM phosphate buffer (pH 7) with 2% of methanol solution at a flow-rate of 0.8 ml min(-1), while proteins and endogenous hydrophilic substances in plasma were washed off to waste. The enriched analytes were then back-flushed onto the analytical C(18) column, separated by a mixture of 10 mM phosphate buffer (pH 7) acetonitrile (70:30 v/v) solution at a flow-rate of 1.0 ml min(-1) and detected by the ultraviolet absorbance set at 212 and 285 nm and without transfer loss. Linear calibration graphs were obtained for sample injection volumes of 50 (0.2-4.0 of mug of CBZ ml(-1) and 0.1-5.0 mug of CBZ-E ml(-1), respectively), and 20 mul (5.0-20.0 mug of CBZ ml(-1)); in either case the r-value was >0.9963. Recoveries from spiked plasma samples were quantitative for both analytes and the coefficients of variation were below 3.83%. The lowest samples concentrations that can be quantified with acceptable accuracy and precision was 0.2 mug CBZ ml(-1) and 0.1 mug CBZ-E ml(-1) when a sample volume of 50 mul was injected. Concentrations of 0.08 and 0.05 mug ml(-1) of CBZ and CBZ-E were considered the limit of detection for a signal-to-noise ratio of 3. Furthermore, the developed column-switching method was successfully applied to the determination of CBZ and CBZ-E in plasma samples of patients submitted to CBZ therapy.  相似文献   

19.
The solvent and salting effects induced on the sample preparation procedure applied to plasma samples containing fenofibric acid and 4-chlorophenyl-4′-hydroxyphenyl methanone (internal standard) are evaluated. Sodium chloride addition during a deproteinization step using both methanol and phosphoric acid influences the recovery of the analytes as well as the selectivity of the process. The chromatographic method allows high sample volume injection (500 μl) with the focusing of both analytes in the stationary phase. The synthesized high porosity octadecylsilica material allows a fast elution gradient at 4 ml/min flow-rate and a complete analysis within 7 min. UV-detection is made at 295 nm and quantitation limit in the 20 ng/ml concentration level can be achieved. The method can be successfully applied for bioequivalence studies on fenofibrate, administrated as prodrug (fenofibric acid represents its main active metabolite) in pharmaceutical formulations. The main parameters used in studying the retention behavior of the internal standard and FEFA were also estimated.  相似文献   

20.
A sensitive, rapid and specific method for the simultaneous quantification of oxysophocarpine (OSC) and its active metabolite sophocarpine (SC) in rat plasma was developed and validated, using a liquid-liquid extraction procedure followed by liquid chromatography/electrospray ionization mass spectrometric (LC/ESI-MS) analysis. The separation was performed on a Zorbax Extend-C(18) column (2.1 mm i.d. x 50 mm, 5 microm) with a C(18) guard column using methanol-water containing 5 mm ammonium acetate (15:85, v/v) as mobile phase. Analysis was performed in selected ion monitoring (SIM) mode with an electrospray ionization (ESI) interface. [M + H](+) at m/z 263 for OSC, [M + H](+) at m/z 247 for SC and [M + H](+) at m/z 249 for matrine (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration ranges 10-1000 ng/mL for OSC and 5-500 ng/mL for SC. The intra- and inter-day precisions (coefficient of variation) were within 7% for both analytes. Their accuracy (relative error) ranged from -6.4 to 1.5%. The limits of detection for OSC and SC were 3 and 1.5 ng/mL, respectively. The limits of quantitation for OSC and SC were 10 and 5 ng/mL, respectively. Recoveries of both analytes were greater than 85% at the low, medium and high concentrations. Both analytes were stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study after an oral administration of OSC to rats with a dose of 15 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号