首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DSC, SEM–EDS, XRD and high-temperature XRD analysis was used to study thermal and crystallization behaviour of yttrium aluminate glasses prepared in the form of microspheres. The glasses YA-E (eutectic composition from the pseudo-binary system Al2O3–Y3Al5O12) and YA-G (a composition identical to the stoichiometric Y3Al5O12 (YAG) phase) were prepared by combination of the Pechini method with flame synthesis. The resulting microspheres were largely amorphous, but contained traces of yttrium–aluminium garnet as the main crystalline phase embedded in the yttrium aluminate glass matrix. Crystallization of the YAG phase was observed as the dominant exothermic process on DSC curves. From the DSC records, the basic thermal characteristics of the matrix glass, i.e. T g (glass transition temperature), T x (onset of crystallization peak temperature), T f (temperature of the inflection point of the crystallization peak) and T p (maximum of crystallization peak temperature), were determined. HT XRD experiments in the temperature interval 750–1200 °C and isothermal HT XRD experiments at 932, 998 and 1200 °C with 6-h holding time were also performed. Crystallization experiments at lower temperatures 932 °C (YA-E) and 915 °C (YA-G) were conducted to study phase development in a low-temperature region. Crystallization experiments at higher temperatures (1000, 1300 and 1500 °C) with maximum holding time of 6 h were performed to study crystallization of α-Al2O3 in the eutectic system. The SEM and SEM–EDS examination of polished cross sections of crystallized microspheres revealed slow volume crystallization of the YAG phase in the AY-E glass. Eventually, polycrystalline microspheres with fine-grained microstructure were prepared after 6-h treatment at 1500 °C.  相似文献   

2.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

3.
In the cobalt oxide-molybdenum trioxide-alumina system with a molar ratio of 1:1:1, the amounts of the high-temperature modification (a) of CoMoO4 formed during heating from 500 to 800°C and the low-temperature modification (b) formed by phase transition during the subsequent cooling to room temperature are influenced by the kinds of alumina used, such as α-, γ- and calcined γ-aluminas. Powder X-ray diffraction analysis revealed that in an α-alumina system formation of a-CoMoO4 is most favorable at a calcination temperature of 500°C and phase transition from a- to b-CoMoO4 during cooling is enhanced by higher calcination temperatures. In the γ-alumina system, formation of a-CoMoO4 is slight at 500°C but increases with increase in the calcination temperature, as does slightly the degree of phase transition from a- to b-CoMoO4 upon cooling. In a system containing calcined γ-alumina, formation of a-CoMoO4 similar to α- and γ-alumina systems was observed to occur at 500°C and 800°C, respectively, together with phase transition to b-CoMoO4 during cooling. The degree of dispersion in the CoOMoO3 coexistent system is affected by the particle size of aluminas, such as coarse α-, fine amorphous γ- and calcined γ-alumina consisting of both sizes, as observed with electron microscopy. Presence of finer γ-alumina is considered to suppress or retard the solid state reaction and phase transition.  相似文献   

4.
The crystallization behavior after partial or complete melting of the α phase of iPP is examined by combined differential scanning calorimetry (DSC) and optical microscopy: calorimetric results are directly correlated with corresponding morphologies of microtome sections of DSC samples. On partial melting at various temperatures (hereafter referred to as Ts) located in a narrow range (4°C) below and near Tm, the number of nuclei increases (as in classical self-nucleation experiments), by several orders of magnitude; on subsequent cooling, the crystallization peak is shifted by up to 25°C. After partial melting in the lower part of the Ts range and recrystallization, the polymers display a prominent morphology “memory effect” whereby a phantom pattern of the initial spherulite morphology is maintained. After partial melting in the upper part of the Ts range the initial morphology is erased and self-nucleation affects only the total number of nuclei. The present experimental procedures make it possible to define, under “standard” conditions, the crystallization range of the polymer and in particular, the maximum crystallization temperature achievable when “ideally” nucleated. © John Wiley & Sons, Inc.  相似文献   

5.
The effects of nematic liquid crystalline polymer as a new β-nucleator (LCP-N) on crystallization structure and morphology of isotactic polypropylene (iPP) were investigated using wide-angle X-ray diffraction and polarized optical microscopy. The experimental results showed that LCP-N could lead to substantial changes in the crystallization structure and morphology of iPP. The nucleating activity of LCP-N mainly depended on its content, mesogenic molecules, and thermal history of processing. A high content of β-form (K β) was obtained by the combined effect of the optimum LCP-N content and crystallization temperature. The maximum K β reached 84% when the LCP-N content and crystallization temperature and time were 0.4 wt.%, 125°C, and 1 h, respectively. In addition, the birefringence of β spherulite was stronger than that of α spherulite; this difference is related to their particular way of growing and lamellar morphology. Due to its particular sheaf-like growth, the β spherulite was brighter and more colorful.  相似文献   

6.
Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around ?40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at ?91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of ?19.3°C forms upon slow cooling.  相似文献   

7.
Small-angle light-scattering (SALS), Polarized light microscopy (PLM), differntial scanning calorimetry (DSC), and small-angle x-ray scattering (SAXS) were used to study morphological changes in segmented polyurethanes with 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) as the hard segment. It was found. for the first time, that spherulites could form from the melt by quenching the polyurethanes in the melt state to annealing temperatures between 120°C and Th, the highest annealing temperature for spherulite formation. Th ranged from 140°C to ca. 170°C and depended upon the hard-and soft-segment compatibility. Within the range 120°C to Th, the radius of the spherulite increased with increasing hard-segment content at each fixed annealing temperature. Annealing at 135–140°C gave rise to the largest spherulites. SAXS was used to investigate the phase-separated structures corresponding to the spherulite formation. The interdomain spacing increased with increasing hard-segment content and with increasing annealing temperature.The degree of phase separation first increased with increasing annealing temperature from room temperatures (ca. 25°C), reached a maximum at ca. 107°C, and then decreased with further increase in the annealing temperature. On the basis of these observations, the mechanisms of phase separation, crystallization, and spherulite formation are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
The aim of this study was to test selected factors, such as sample preparation and measurement procedure, potentially influencing repeatability of DSC analysis of milk fat melting and crystallization. The study investigated the effect of such factors as scanning rate, type of sample pans, method of butter dehydration, and final temperature in the cooling experiment. Based on recorded results, it was observed that cooling rate has a considerable effect on temperature, enthalpy, and height of peaks in the process of milk fat crystallization, as well as peak height and enthalpy in the melting process. By contrast, in the melting process no significant differences were observed in all measured temperatures in the range of heating rate of 2–20 °C min?1 (p > 0.05). No statistically significant effect on thermodynamic parameters was found for sample pan type, the applied butter dehydration method and various final cooling temperatures (?60, ?50, and ?40 °C) either in the melting or crystallization processes. Only temperature of the second peak (T c2) in the crystallization process constituted an exception in this respect, with significant differences (p ≤ 0.05) being recorded depending on the applied pan and dehydration method. With regard to the dehydration method, for the extraction and centrifugation methods the first peak forming during crystallization was characterized by high instability, manifested by various peak shape. Generally, it was found that the analysis of the melting and crystallization processes in milk fat, despite its complex composition, is characterized by high repeatability. Mean values of RSD calculated from all the experiments were very low, i.e., 1.8 % for the temperature in the melting process and 1.5 % in crystallization, 0.9 % for melting enthalpy, and 3.2 % for crystallization enthalpy, whereas for peak heights in melting it was 2.9 % and for crystallization it was 9.3 %, respectively.  相似文献   

9.
The thermal stability of a short carbon-fiber-reinforced PEEK composite was assessed by thermogravimetry and by a Rheometrics dynamic analyzer. The results indicated that holding for 10 min at 380°C was a suitable melting condition to avoid the thermooxidative degradation under air. After proving that the heating rate of 50°C/min can be used to evaluate the crystallinity, a heating stage was used to prepare nonisothermally crystallized specimens using cooling rates from 1 to 100°C/min after melting at 400°C for 3 or 15 min. The degree of crystallinity and the melting behavior of these specimens were investigated by DSC at a heating rate of 50°C/min. The presence of three or four regions indicated that the upper melting temperature, Tm, changed with the crystallization temperature. The first region with the highest Tm, which corresponded to the cooling rate of 1°C/min, can be associated with the crystallization in regime II. There was a second region where Tm decreased as the amount of crystals formed in regime II decreased with increasing cooling rate from 5 to 20°C/min. The third region, a plateau region, corresponded to regime III condition in which the crystals were imperfect. In the fourth region, the cooling was so fast that crystallization was incomplete during the cooling for the melting condition of 400°C for 15 min. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2225–2235, 1998  相似文献   

10.
A novel nucleating agent (TBC8‐t), self‐assembled with ptert‐butylcalix[8]arene (TBC8) and toluene, was used to manipulate the crystallization behavior of poly(L ‐lactic acid) (PLLA). Toluene molecules were used to adjust the crystallization structure of TBC8. Differential scanning calorimetry results show that the crystallization peak temperature (Tc) and crystallization rate (ΔHc/time) of PLLA nucleated with TBC8‐t are 132.3 °C and 0.24 J/gs, respectively, which are much higher than that with conventional nucleating agent‐talc (Tc = 119.3 °C, ΔHc/time = 0.13 J/gs). The results of polarized optical microscopy demonstrate that TBC8‐t could greatly enhance the crystallization rate of PLLA by increasing the nucleation rate rather than crystal growth rate. Along with an improvement of the crystallization rate, the crystalline morphology of PLLA is also affected by TBC8‐t. The addition of TBC8‐t transforms most of the original spherulite crystals into sheaf‐like crystals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1235–1243, 2010  相似文献   

11.
Complex shear modulus at 33 kc./sec. is measured at temperatures of ?150–150°C. for amorphous selenium and crystalline selenium with different crystallinities. The dielectric relaxation at 10 kc./sec. to 3 kc./sec. to 3 Mc./sec. is observed at temperatures of ?32–25°C. for iodine-doped crystalline selenium. It is concluded from the results of this study and of others' that selenium exhibits four relaxations, α, β γ, and δ, in order of descending temperature. The β relaxation is observed only in the amorphous sample above the glass temperature and is assigned to the primary relaxation. The α, γ, and δ relaxations are found in the crystalline selenium. The α relaxation, which is prominent in a highly crystalline sample, is assigned to the crystalline relaxation. The γ and δ relaxations increase in peak height with decreasing crystallinity and are attributed to the disordered region in the crystalline selenium. The dispersion map (logarithm of frequency versus reciprocal absolute temperature of loss maximum) of selenium is presented.  相似文献   

12.
Crystallization kinetics has been studied for a polydioxolan (PDOL) sample, over a wide temperature range, by dilatometry and microscopy. The dilatometry results can be analyzed using the Avrami equation. At temperatures higher than 22°C, the crystallization data must be analyzed in two steps: the first part of the curve corresponds to PDOL with a very disordered morphology (Phase I) while the second part of the crystallization curve is related to a spherulitic morphology (Phase II). The passage from the low to the high crystallization temperature region is associated with a change in the Avrami exponent from 3 to 4. The crystal surface free-energy product σσe was found to be 18 × 102 erg2/cm4, very close to that of polyoxymethylene. The crystallization kinetics was studied by microscopy over the temperature range?18 to 35°C. Growth and nucleation rates were recorded. Two phases are found only at temperatures higher than 22°C. The appearance of Phase II is related to a decrease in the growth rate of the sample. From the growth rates, the crystal surface free-energy product σσe was found equal to 17 × 102 erg2/cm4. The detailed analysis of the crystallization of the two phases reveals a complicated process which can be divided into four different steps: (a) growth of a disordered phase, Phase I; (b) nucleation of a higher birefringence structure; (c) propagation of a high birefringence phase; and (d) spherulitic growth, Phase II. The analysis of PDOL crystallization strongly suggests the presence of a hedrite → oval → spherulite transition: the hedrite formation corresponds to step (a), the oval formation to steps (b) and (c), and the spherulite formation to step (d).  相似文献   

13.
李良彬 《高分子科学》2014,32(9):1224-1233
In this study, recovery processes of isotactic polypropylene(iPP) melted spherulites at 135 °C after melting at higher temperatures(170 °C–176 °C) were investigated with polarized optical microscopy and Fourier transform infrared spectroscopy. The recovery temperature was fixed to exclude the interference from heterogeneous nuclei. After melting at temperatures between 170 °C and 174 °C, the melted spherulite could recover back to the origin spherulite at low temperatures. Interestingly, a distinct infrared spectrum from iPP melt and crystal was observed in the early stage of recovery process after melting at low temperatures, where only IR bands resulting from short helices with 12 monomers or less can be seen, which indicates that the presence of crystal residues is not the necessary condition for the polymer memory effect. Avrami analysis further indicated that crystallization mainly took place in melted lamellae. After melting at higher temperatures, melted spherulite cannot recover. Based on above findings, it is proposed that the memory effect can be mainly ascribed to melted lamellae, during which crystalline order is lost but conformational order still exists. These conformational ordered segments formed aggregates, which can play as nucleation precursors at low temperatures.  相似文献   

14.
Calorimetric study of Se85−x Te15Sn x (x = 0, 2, 4 and 6) glassy alloys have been performed using Differential Scanning Calorimetry (DSC) under non-isothermal conditions at four different heating rates (5, 10, 15 and 20 °C/min). The glass transition temperature and peak crystallization temperature are found to increase with increasing heating rate. It is remarkable to note that a second glass transition region is associated with second crystallization peak for Sn additive Se–Te investigated samples. Three approaches have been employed to study the glass transition region. The kinetic analysis for the first crystallization peak has been taken by three different methods. The glass transition activation energy, the activation energy of crystallization, and Avrami exponent (n) are found to be composition dependent. The crystallization ability is found to increase with increasing Sn content. From the experimental data, the temperature difference (T p − T g) is found to be maximum for Se83Te15Sn2 alloy, which indicates that this alloy is thermally more stable in the composition range under investigation.  相似文献   

15.
The crystallization process of some glasses in the ternary Na2O–SiO2–PbO system with good chemical stability that can be used for waste inertization was studied using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), differential thermal analysis (DTA) and scanning electron microscopy. The parent glasses were characterized by XRD and FT-IR, and their vitreous state was determined. DTA measurements evidenced glass transition (T g) and crystallization temperatures (T c). The thermal treatments were conducted at vitreous transition temperature (400 °C) and at highest effect of crystallization (650 °C). XRD evidenced the lead and sodium silicate crystalline phases in samples treated at 650 °C for 12 h. Micrometer crystallites dispersed in the glass matrices have affected the transparence of glasses and made them opaque after treatment at 650 °C. The influence of oxide quantities in compositions on the crystallization tendency was revealed. A PbO higher content than that of SiO2 as well as lower Na2O content decreased the tendency of crystallization.  相似文献   

16.
The crystallization behavior and morphology of polymerized cyclic butylene terephthalate (pCBT) were investigated by thermal differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The spherulite growth rate was analyzed based on the Hoffman and Lauritzen theory to better understand the crystallization behavior. We found four typical morphologic features of pCBT corresponding to the crystallization temperature spectrum: usual negative spherulite, unusual spherulite, mixed birefringence spherulite coexisting with boundary crystals, and highly disordered spherulitic crystallites. The Avrami crystallization kinetics confirmed the occurrence of combined heterogeneous nucleation accompanied by a change in the spherulitic shape of pCBT, which also agreed with the PLM results. The equilibrium melting temperature and glass transition temperature of pCBT were 257.8 °C and 41.1 °C, respectively. A regime II–III transition occurred at 200.9 °C, which was 10 °C lower than that reported for poly(butylene terephthalate) (PBT). Coinciding with and attributed to the regime transition, the boundary crystal disappeared at temperatures above 200 °C and the morphology changed from the mixed type to highly disordered spherulitic crystallites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1127–1134, 2010  相似文献   

17.
Molecular motions in poly(vinylidene fluoride) were studied by the dielectric technique. Three distinct absorption peaks (αc, αa, and β) were observed in the frequency range from 0.1 cps to 300 kcps and in the temperature range from ?66 to 100°C. The molecular mechanisms for these absorptions and their temperature dependence are discussed, and results are compared with x-ray diffraction and the NMR measurements. It is concluded that the αc absorption located at 97°C (1 kcps) is related to molecular motion in the crystalline region. The αa absorption located at ?27°C (1 kcps) can be interpreted as due to the micro-Brownian motion of the amorphous main chains. The β absorption located at ?47°C (1 kcps) is attributed to local oscillation of the frozen main chains.  相似文献   

18.
The polymorphic behavior of 1-octadecyl vinyl ether was investigated by DSC and X-ray diffraction measurements under various temperatures. In DSC measurement of 1-octadecyl vinyl ether in the temperature range of −30 to approximately 50°C, four transition peaks were observed on heating, whereas three transition peaks appeared on cooling. The phase-transition behavior was investigated by the repeating scanning DSC measurements. It was concluded that this compound exhibited four crystalline modifications: α, sub α, β0, and β1. It was confirmed by the temperature-controlled X-ray diffraction measurement that these phase transitions are attributed to the change of crystal systems from hexagonal packing (α form) to a distorted orthorhombic (O⟂′) system (β1 form) via orthorhombic (O⟂) (sub α form) and intermediate β0 form, although the β0 form has not yet been clarified. In the γ-ray-irradiation solid-state polymerization for these crystal forms of this compound, the polymerizability of the sub α form is higher than that of other forms, and that of the α form is lowest. The polymerizability demonstrated an unusual increase at a temperature of −83.6°C, probably because the cationic polymerization mechanism is dominant over that of the free radical. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3845–3853, 1999  相似文献   

19.
The dynamic piezoelectric stress constant e*25 of drawn films of poly(γ-methyl D -glutamate) (PMDG) cast from solutions in α-helix-promoting solvents 1,2-dichloroethane (DCE) and chloroform and from the nonhelicogenic solvent dichloroacetic acid (DCA) was measured from ?180°C to 200°C at 110 Hz. The drawn and annealed films cast from chloroform show a small peak for the real part of piezoelectric stress constant ?e25 in the temperature range of the mechanical α2-crystalline relaxation, which is caused by the distortion motion of the backbone chain of the α-helix. On the other hand, drawn films cast from DCE show the peak of the real part of the piezoelectric stress constant, whose magnitude decreases in the range of the mechanical α1-crystalline relaxation or the β-relaxation processes, which were previously ascribed, respectively, to mutual slipping of α-helices and to the micro-Brownian motion of disordered regions. Also, ?e25 becomes virtually zero near 180°C where the α2-relaxation is located. These results suggest that the polarization change induced by applied strain is caused by distortion of the backbone chains in the α-helix. Near 0°C, the temperature range of the side-chain mechanical relaxation, ?e25 exhibits a marked peak both for films cast from chloroform and from DCE. The maximum value of ?e25 and the orientation function of the α-helix axis are linearly related and extrapolation of ?e25,max to unit orientation function gives 1.3 × 104 cgs esu which corresponds to 2.4 Debye per residue. This value corresponds reasonably to the value of 3.71 Debye for the permanent dipole moment of NHCO bond if the correction for crystallinity is made. This result also indicates the piezoelectric properties of PMDG arise from distortion of the backbone chain of the α-helix induced by applied strain.  相似文献   

20.
The incorporation of poly(1,4‐butylene adipate) (PBA) and its crystallization behavior within poly(vinylidenefluoride) (PVF2) spherulites in miscible PVF2/PBA blends have been further studied with small‐angle X‐ray synchrotron scattering (SAXS). The incorporation of PBA into the PVF2 interlamellar region was found to be dependent on the PVF2 crystallization conditions. In our previous work, where the blends were crystallized by a one‐step quenching process directly from 190 (a single‐phase region) to 20 °C (a three‐phase region), the transition from PBA inclusion in the PVF2 interlamellar region to interlamellar exclusion occurred at a PBA weight fraction of ∼ 0.5. In this case, where the blends were first quenched from 190 (a single‐phase region) to 130 °C (a two‐phase region) and then further quenched to 20 °C (a three‐phase region), the transition occurred at a PBA weight fraction of less than 0.3. That is, when a blend is crystallized under different conditions, different amounts of the PBA component are incorporated into the PVF2 interlamellar phase. The thickness of the PVF2 interlamellar phase, in turn, may affect the PBA crystalline structure in the interlamellar region. Time‐resolved SAXS was used to probe the crystallization dynamics of both PVF2 and PBA components in a blend containing 60 wt % PBA. The blend was quenched from the single‐phase region at 190 to 130 °C to crystallize the PVF2 component and was then further quenched to 20 °C to crystallize the PBA component. This study, together with our earlier results, shows that the time dependence of the PVF2 crystallization rate and crystalline lamellar thickness is a function of the PBA content in the blend. The glass‐transition temperature of the blend and the PBA diffusion process are the two dominant factors that control the PVF2 crystallization dynamics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2296–2308, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号