首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study reports a two-steps route for obtaining magnetic nanoparticles–polysaccharide hybrid materials consisting of Fe3O4, NiFe2O4 and CuFe2O4 nanoparticles synthesis by coprecipitation method in the presence of a soft template followed by coating of ferrite nanoparticles of 8–10-nm size range with polysaccharide type polymers—sodium alginate or chitosan. Magnetic oxide nanoparticles and the corresponding hybrid materials were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, atomic absorption spectroscopy (AAS), FTIR spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and specific surface area measurements. The vibrating sample magnetometry confirms the superparamagnetic properties of the synthesized ferrites and hybrids. Using this route, the percent of magnetic nanoparticles retained in chitosan-based hybrid materials is nearly double in comparison with that of sodium alginate–based materials. The biological activity tests on Escherichia coli ATCC 25922, Pseudomonas aeroginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Candida scotti microorganisms show the non-toxic properties of prepared hybrid materials.  相似文献   

2.
We have synthesized, characterized and studied the third-order nonlinear optical properties of two different nanostructures of polydiacetylene (PDA), PDA nanocrystals and PDA nanovesicles, along with silver nanoparticles-decorated PDA nanovesicles. The second molecular hyperpolarizability γ(?ω; ω, ?ω, ω) of the samples has been investigated by antiresonant ring interferometric nonlinear spectroscopic (ARINS) technique using femtosecond mode-locked Ti:sapphire laser in the spectral range of 720–820 nm. The observed spectral dispersion of γ has been explained in the framework of three-essential states model and a correlation between the electronic structure and optical nonlinearity of the samples has been established. The energy of two-photon state, transition dipole moments and linewidth of the transitions have been estimated. We have observed that the nonlinear optical properties of PDA nanocrystals and nanovesicles are different because of the influence of chain coupling effects facilitated by the chain packing geometry of the monomers. On the other hand, our investigation reveals that the spectral dispersion characteristic of γ for silver nanoparticles-coated PDA nanovesicles is qualitatively similar to that observed for the uncoated PDA nanovesicles but bears no resemblance to that observed in silver nanoparticles. The presence of silver nanoparticles increases the γ values of the coated nanovesicles slightly as compared to that of the uncoated nanovesicles, suggesting a definite but weak coupling between the free electrons of the metal nanoparticles and π electrons of the polymer in the composite system. Our comparative studies show that the arrangement of polymer chains in polydiacetylene nanocrystals is more favourable for higher nonlinearity.  相似文献   

3.
Twenty ester-linked 1,4-disubstituted 1,2,3-triazoles having a furyl/thienyl moiety have been synthesized from heteroaryl prop-2-yn-1-yl carboxylate and aromatic azides via a Cu(I) catalyzed 1,3-dipolar cycloaddition. All the synthesized compounds were characterized by FTIR, \(^{1}\)H NMR, \(^{13}\)C NMR spectroscopy and HRMS. Synthesized triazoles were tested in vitro for antimicrobial evaluation against Gram-negative bacteria—Escherichia coli, Enterobacter aerogenes and Klebsiella pneumoniae; Gram-positive bacteria—Staphylococcus aureus and two fungal strains—Candida albicans and Aspergillus niger, reflecting moderate to good activity. The structure of compound 6f was also confirmed by X-ray crystallography (CCDC 1469326).  相似文献   

4.
Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa.  相似文献   

5.
Here we have demonstrated a novel single step technique of synthesis of highly fluorescent carbon nanoparticles (CNPs) from broth constituent and in vivo bioimaging of Caenorhabditis elegans (C. elegans) with the synthesized CNPs has been presented. The synthesized CNPs has been characterized by the UV-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM) and Raman studies. The sp 2 cluster size of the synthesized samples has been determined from the measured Raman spectra by fitting it with the theoretical skew Lorentzian (Breit-Wigner- Fano (BWF)) line shape. The synthesised materials are showing excitation wavelength dependent tunable photoluminescence (PL) emission characteristics with a high quantum yield (QY) of 3 % at a very low concentration of CNPs. A remarkable increase in the intensity of PL emission from 16 % to 39 % in C. elegans has also been observed when the feeding concentration of CNPs to C. elegans is increased from 0.025 % to 0.1 % (w/v). The non-toxicity and water solubility of the synthesized material makes it ideal candidate for bioimaging.  相似文献   

6.
Iron-based nanoparticles prepared by precipitation from solid solution of saturated binary Cu-Fe alloy were studied by transmission electron microscopy, high-energy X-ray diffraction and Mössbauer spectroscopy. The results showed that the investigated as-prepared nanoparticles contained two phases. The major phase was determined as α?F e and the minor phase as γ?F e 2 O 3. Furthermore, additionally annealed samples in Ar protective atmosphere were investigated. Results showed clear decrease in contribution of α?F e phase and also revealed the presence of various iron oxides (maghemite, magnetite, hematite and w?stite).  相似文献   

7.
Granular silver films deposited on a thin insulating film of amorphous hydrogenated carbon (a-C:H) and transparent conducting electrode (polycrystalline indium tin oxide (ITO) layer) have been investigated by spectroscopy and microscopy methods. The extinction spectra of silver films on the surface of these materials are found to be significantly different. An annealing of silver films causes a blue shift of the peak of plasmon resonance band in the spectrum of silver nanoparticles: by 16 nm on the a-C:H surface and by 94 nm on the ITO surface. Silver films on the surface of a-C:H films are characterized by a narrower band in the extinction spectrum, which is peaked at 446 nm. The changes observed in the optical density of Ag films are related to the change in size and area of nanoparticles. The results of spectral studies of Ag films are in agreement with the data on the nanostructure obtained by scanning electron microscopy and statistical image processing. The spectra of granular silver films are shown to correlate well with the nanoparticle distribution function over the film area.  相似文献   

8.
Using the spectroscopic method, the individual interaction of the three biochemically important amino acids, which are constituents of protein, namely, tryptophan, tyrosine, and phenylalanine with biologically synthesized silver nanoparticles has been investigated. The obtained UV-Vis spectra show the formation of ground-state complexes between tryptophan, tyrosine, and phenylalanine with silver nanoparticles. Silver nanoparticles possess the ability to quench the intrinsic fluorescence of the aforesaid amino acids by a dynamic quenching process. The binding constant, number of binding sites, and corresponding thermodynamic parameters (ΔH, ΔS, and ΔG) based on the interaction system were calculated for 293, 303, and 313 K. In the case of tryptophan and phenylalanine, with increase in temperature, the binding constant K was found to decrease; conversely, it was found to increase with increase in temperature in the case of tyrosine. The thermodynamic results revealed that the binding process was spontaneous; hydrogen bonding and van der Waals interaction were the predominant forces responsible for the complex stabilization in the case of tryptophan and phenylalanine, respectively, whereas in the case of tyrosine, hydrophobic interaction was the sole force conferring stability. Moreover, the Förster non-radiation energy transfer theory has been applied to calculate the average binding distance among the above amino acids and silver nanoparticles. The results show a binding distance of <7 nm, which ensures that energy transfer does occur between the said amino acids and silver nanoparticles.  相似文献   

9.
Colloidal nanocrystals of ZnSe doped with Mn2+ were synthesized in non-polar medium using hot-injection technique. Obtained samples were characterized by means of photoluminescence and absorption spectroscopies. To confirm the incorporation of Mn2+ impurity and to reveal its state and localization, electron paramagnetic resonance (EPR) spectroscopy was employed. As a result, EPR spectra were analyzed and hyperfine splitting constant and g-factor for Mn2+ dopant were determined.  相似文献   

10.
Nano-octahedra of cobalt ferrite Co x Fe3???xO4 (1?≤?x?<?2), with a broad size distribution around 15–20 nm, were synthesized by a hydrothermal method using nitrates as precursors. For the first time, single-phased nano-octahedra of cobalt-rich ferrite Co x Fe3???xO4 (x?=?1.5) were synthesized. The nano-octahedra are crystallized in a normal spinel structure, with tetrahedral sites occupied by Co2+. This specific octahedral shape was obtained with anionic, cationic, and nonionic surfactants. The nature of the surfactant influenced the chemical composition of the powder and the size of the nano-octahedra. The {100} truncation of the octahedra is more pronounced for the small particles. For the first time, single-phased nanoparticles with as much as x?=?1.8 cobalt were synthesized with ethylene glycol as solvent. These nanoparticles, around 8 nm in size, have no specific shape and possess a lacunar spinel structure similar to maghemite. The samples were characterized by X-ray diffraction, transmission electron microscopy, and energy-dispersive spectroscopy.
Graphical abstract ?
  相似文献   

11.
Extracts of garlic (Allium sativum L.) were obtained using supercritical carbon dioxide extraction and were separated into individual compounds using preparative high performance liquid and gas chromatography. A series of nonsymmetrical allyl disulfides with different substituents were synthesized. The compounds isolated from the supercritical garlic extract and the synthetic nonsymmetrical allyl disulfides (SNA) were tested as potential antimicrobial agents using a number of test objects: Candida utilis, Bacillus cereus, Pseudomonas aurantiaca, and Escherichia coli. It was shown that the SNA exhibit high antimicrobial activity, which was much higher that the activities of individual components of garlic and in some cases were comparable in efficiency with antibiotics of the floxacin series widely used in clinical practice. The data obtained suggest the potential for using SNA as antimicrobial agents.  相似文献   

12.
The hexagonal pyrrhotite Fe1?x S nanodisks with the NiAs-type structure were synthesized by thermal decomposition of ferrous chloride and thiourea in oleylamine. The Mössbauer spectroscopy and magnetic measurements data indicate that a mixture of antiferromagnetic (AFM) and ferrimagnetic (FRM) phases with the NC (N ≥ 3) and 2C-type superstructures is present in the Fe1?x S compound at temperatures between 80 K and Néel temperature T N. At T < 370 K, the AFM phase prevails over the FRM phase. At T > 370 K, a redistribution of iron vacancies takes place, and the vacancy ordering transforms from the NC (N ≥ 3) to 2C-type which essentially increases the magnetization with maximum value at 470 K. Heating the sample above the Néel temperature 565 K leads to a random distribution of vacancies, and this state is quenched upon subsequent cooling of the sample to 300 K. This gives rise to a pure AFM structure with a zero magnetic moment due to a total compensation of the moments in neighboring iron layers. Thus, the high-temperature redistribution of cation vacancies leads to irreversible magnetic transformations in the Fe1?x S nanoparticles.  相似文献   

13.
Samples based on hafnium diselenide intercalated with atoms of two types, CuxAgyHfSe2 at (x + y) ≤ 0.2, have been synthesized for the first time. The frequency dependences of the components of the complex impedance have been measured using impedance spectroscopy in the frequency range from 1 Hz to 10 MHz, and the specific features of the relaxation processes occurring in samples of different compositions have been analyzed. It has been shown that the characteristic times of these processes depend not only on the total concentration of intercalated atoms, but also on the ratio between them. As the total concentration of copper and silver increases, the onset of frequency dispersion of the complex admittance shifts to the higher frequency range. The relative contributions from the conduction and relaxation polarization losses also change depending on the total and element concentrations of the intercalated atoms.  相似文献   

14.
Data for the vapor-phase doping (300°C) of nickel phthalocyanine (NiPc) by sodium taken in different concentrations (x), as well as structural analysis data for Na x = 0.2NiPc, Na x = 1NiPc, and Na x = 3NiPc samples, have been reported. The structure of the samples and their atomic configuration versus the doping level have been studied by transmission electron microscopy, Raman scattering, X-ray diffraction, X-ray absorption spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The structural parameters of Ni–N, Ni–C, and Ni–Ni bonds have been determined, and it has been found that, at a low level of doping by sodium, local structural distortions are observed in some molecules of the NiPc matrix near nickel atoms. The fraction of these molecules grows as the doping level rises from x = 0.2 to x = 1.0. It has been shown that doping changes the oscillation mode of light atoms, which indicates a rise in the electron concentration on five- and six-membered rings. At a high level of sodium doping (x = 3.0), nickel nanoparticles with a mean size of 20 nm and molecule decomposition products have been observed in the NiPc matrix. It has been found that the fraction of nickel atoms in the Na x = 3NiPc nanoparticles as estimated from EXAFS data is sufficient for the room-temperature magnetic properties of the samples to persist for a long time.  相似文献   

15.
The interaction of semiconductor quantum dots and silver nanoparticles (AgNPs) with bacteriorhodopsin (BR), a membrane protein contained in the purple membrane (PM) of Halobacterium salinarum, is studied. It is shown that both types of nanoparticles are adsorbed efficiently on the surface of the purple membranes, modulating the parameters of the bacteriorhodopsin photocycle. Electrostatic interactions are found to be the main cause of the effect of nanoparticles on the bacteriorhodopsin photocycle. These results explain our earlier data on the “fixation” of the bacteriorhodopsin photocycle for protein molecules trapped after incubation of the purple membranes with silver nanoparticles near the location of the “hot spots” of the effect of surface-enhanced Raman scattering (SERS). It is demonstrated that exposure of silver nanoparticles with bacteriorhodopsin in SERS-active regions lowers the amount of bacteriorhodopsin molecules involved in phototransformations.  相似文献   

16.
Iron-doped SnO2 nanoparticles with chemical formula Sn1?xFexO2?y (x =?0.02, 0.05 and 0.10 at%) were successfully produced by a proteic sol–gel method. Thermogravimetric analysis and differential scanning calorimetry were performed to investigate the thermal behavior of the precursor powders as well as to select the appropriate calcination temperatures for oxide formation. X-ray absorption near-edge spectroscopy studies were carried out to determine the valence state of the transition metal used as dopant. Structural, morphological, and optical properties of the synthesized materials were studied by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectroscopy. The results confirmed the formation of nanometric spherical particles of single-phased SnO2 with rutile-type tetragonal structure. Iron doping was accomplished in the form of Fe3+ substituting for Sn4+ in the SnO2 matrix, with the creation of oxygen vacancies to achieve charge balance. Band gaps of SnO2 were found to be unaffected by the introduction of iron.  相似文献   

17.
The nature of paramagnetic centers in a nanostructure based on single-walled carbon nanotubes (SWCNTs) encapsulated with Pd was studied by EPR spectroscopy at 77 and 293 K. It was found that strong charge-transfer π complexes of the (Pd-C x ) type, which manifested themselves as a narrow resonance (ΔH = 6–8 G and g = 2.002 at T = 77 k), were formed in the Pd-SWCNT composite along with impurity centers (Fe3O4 nanoparticles within the nanotubes), which were responsible for a broad EPR signal (ΔH = 75 G and g = 2.065 at T = 293 K). These complexes were found to be predominant adsorption sites responsible for a high gravimetric density of hydrogen (H/C ≥ 1.0) within the single-walled carbon nanotubes.  相似文献   

18.
Applications of total absorption γ-ray spectroscopy and its combination with high-resolution nuclear spectroscopy methods for measurements of a β-decay strength function S β (E), determination of the total β-decay energy Q β , and testing of decay-scheme completeness are presented.  相似文献   

19.
We observe stimulated low-frequency Raman scattering (SLFRS) caused by laser pulse interaction with acoustic vibrations of nanoparticles in water suspensions of LaF3 nanoparticles. We show that frequency shifts of the scattering correspond to the eigenfrequencies of nanoparticles vibrations. LaF3 nanoparticles were synthesized in the presence of glycine by a double jet precipitation technique at various initial concentrations of reagents. We investigate the morphologies and particle sizes as well as size distributions of the particles prepared using transmission electron microscopy (TEM) and dynamical light scattering (DLS). In view of the absorption spectroscopy, we show that the reaction system components and products have no absorption in the visible region, including λ = 694.3 nm. From the luminescence spectroscopy, we find also that they do not emit at λ = 694.3 nm excitation.  相似文献   

20.
The current investigation deciphers aggregation pattern of gold nanoparticles (AuNPs) and lipid-treated AuNPs when subjected to aqueous sodium chloride solution with increasing ionic strengths (100–400 nM). AuNPs were synthesized using 0.29 mM chloroauric acid and by varying the concentrations of trisodium citrate (AuNP1 1.55 mM, AuNP2 3.1 mM) and silver nitrate (AuNP3 5.3 μM, AuNP4 10.6 μM) with characteristic LSPR peaks in the range of 525–533 nm. TEM analysis revealed AuNPs to be predominantly faceted nanocrystals with the average size of AuNP1 to be 35?±?5 nm, AuNP2 15?±?5 nm, AuNP3 30?±?5 nm, and AuNP4 30?±?5 nm and the zeta-average for AuNPs were calculated to be 31.23, 63.80, 26.08, and 28 nm respectively. Induced aggregation was observed within 10 s in all synthesized AuNPs while lipid-treated AuNP2 (AuNP2-L) was found to withstand ionic interferences at all concentration levels. However, lipid-treated AuNPs synthesized using silver nitrate and 1.55 mM trisodium citrate (AuNP3, AuNP4) showed much lower stability. The zeta potential values of lipid-treated AuNPs (AuNP1-L-1x/200, ??17.93?±?1.02 mV; AuNP2-L-1x/200, ??21.63?±?0.70; AuNP3-L-1x/200, ??14.54?±?0.90; AuNP3-L-1x/200 ??13.77?±?0.83) justified these observations. To summarize, AuNP1 and AuNP2 treated with lipid mixture 1 equals or above 1x/200 or 1x/1000 respectively showed strong resistance against ionic interferences (up to 400 mM NaCl). Use of lipid mixture 1 for obtaining highly stable AuNPs also provided functional arms of various lengths which can be used for covalent coupling.
Graphical abstract Agglomeration behavior of gold nanoparticles before and after lipid capping
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号