首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the surrogate model based algorithm SO-I for solving purely integer optimization problems that have computationally expensive black-box objective functions and that may have computationally expensive constraints. The algorithm was developed for solving global optimization problems, meaning that the relaxed optimization problems have many local optima. However, the method is also shown to perform well on many local optimization problems, and problems with linear objective functions. The performance of SO-I, a genetic algorithm, Nonsmooth Optimization by Mesh Adaptive Direct Search (NOMAD), SO-MI (Müller et al. in Comput Oper Res 40(5):1383–1400, 2013), variable neighborhood search, and a version of SO-I that only uses a local search has been compared on 17 test problems from the literature, and on eight realizations of two application problems. One application problem relates to hydropower generation, and the other one to throughput maximization. The numerical results show that SO-I finds good solutions most efficiently. Moreover, as opposed to SO-MI, SO-I is able to find feasible points by employing a first optimization phase that aims at minimizing a constraint violation function. A feasible user-supplied point is not necessary.  相似文献   

2.
Uncertainty and integer variables often exist together in economics and engineering design problems. The goal of robust optimization problems is to find an optimal solution that has acceptable sensitivity with respect to uncertain factors. Including integer variables with or without uncertainty can lead to formulations that are computationally expensive to solve. Previous approaches for robust optimization problems under interval uncertainty involve nested optimization or are not applicable to mixed-integer problems where the objective or constraint functions are neither quadratic, nor linear. The overall objective in this paper is to present an efficient robust optimization method that does not contain nested optimization and is applicable to mixed-integer problems with quasiconvex constraints (? type) and convex objective funtion. The proposed method is applied to a variety of numerical examples to test its applicability and numerical evidence is provided for convergence in general as well as some theoretical results for problems with linear constraints.  相似文献   

3.
We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this approach as a bounding routine in an SDP-based branch-and-bound framework. In case of a convex objective function, the new SDP bound improves the bound given by the continuous relaxation of the problem. Numerical experiments show that our algorithm performs well on various types of non-convex instances.  相似文献   

4.
《Optimization》2012,61(8):949-968
If the constraints in an optimization problem are dependent on a random parameter, we would like to ensure that they are fulfilled with a high level of reliability. The most natural way is to employ chance constraints. However, the resulting problem is very hard to solve. We propose an alternative formulation of stochastic programs using penalty functions. The expectations of penalties can be left as constraints leading to generalized integrated chance constraints, or incorporated into the objective as a penalty term. We show that the penalty problems are asymptotically equivalent under quite mild conditions. We discuss applications of sample-approximation techniques to the problems with generalized integrated chance constraints and propose rates of convergence for the set of feasible solutions. We will direct our attention to the case when the set of feasible solutions is finite, which can appear in integer programming. The results are then extended to the bounded sets with continuous variables. Additional binary variables are necessary to solve sample-approximated chance-constrained problems, leading to a large mixed-integer non-linear program. On the other hand, the problems with penalties can be solved without adding binary variables; just continuous variables are necessary to model the penalties. The introduced approaches are applied to the blending problem leading to comparably reliable solutions.  相似文献   

5.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

6.
Mixed-integer quadratic programming   总被引:5,自引:0,他引:5  
This paper considers mixed-integer quadratic programs in which the objective function is quadratic in the integer and in the continuous variables, and the constraints are linear in the variables of both types. The generalized Benders' decomposition is a suitable approach for solving such programs. However, the program does not become more tractable if this method is used, since Benders' cuts are quadratic in the integer variables. A new equivalent formulation that renders the program tractable is developed, under which the dual objective function is linear in the integer variables and the dual constraint set is independent of these variables. Benders' cuts that are derived from the new formulation are linear in the integer variables, and the original problem is decomposed into a series of integer linear master problems and standard quadratic subproblems. The new formulation does not introduce new primary variables or new constraints into the computational steps of the decomposition algorithm.The author wishes to thank two anonymous referees for their helpful comments and suggestions for revising the paper.  相似文献   

7.
In this article, we aim to extend the firefly algorithm (FA) to solve bound constrained mixed-integer nonlinear programming (MINLP) problems. An exact penalty continuous formulation of the MINLP problem is used. The continuous penalty problem comes out by relaxing the integrality constraints and by adding a penalty term to the objective function that aims to penalize integrality constraint violation. Two penalty terms are proposed, one is based on the hyperbolic tangent function and the other on the inverse hyperbolic sine function. We prove that both penalties can be used to define the continuous penalty problem, in the sense that it is equivalent to the MINLP problem. The solutions of the penalty problem are obtained using a variant of the metaheuristic FA for global optimization. Numerical experiments are given on a set of benchmark problems aiming to analyze the quality of the obtained solutions and the convergence speed. We show that the firefly penalty-based algorithm compares favourably with the penalty algorithm when the deterministic DIRECT or the simulated annealing solvers are invoked, in terms of convergence speed.  相似文献   

8.
We present numerical results of a comparative study of codes for nonlinear and nonconvex mixed-integer optimization. The underlying algorithms are based on sequential quadratic programming (SQP) with stabilization by trust-regions, linear outer approximations, and branch-and-bound techniques. The mixed-integer quadratic programming subproblems are solved by a branch-and-cut algorithm. Second order information is updated by a quasi-Newton update formula (BFGS) applied to the Lagrange function for continuous, but also for integer variables. We do not require that the model functions can be evaluated at fractional values of the integer variables. Thus, partial derivatives with respect to integer variables are replaced by descent directions obtained from function values at neighboring grid points, and the number of simulations or function evaluations, respectively, is our main performance criterion to measure the efficiency of a code. Numerical results are presented for a set of 100 academic mixed-integer test problems. Since not all of our test examples are convex, we reach the best-known solutions in about 90 % of the test runs, but at least feasible solutions in the other cases. The average number of function evaluations of the new mixed-integer SQP code is between 240 and 500 including those needed for one- or two-sided approximations of partial derivatives or descent directions, respectively. In addition, we present numerical results for a set of 55 test problems with some practical background in petroleum engineering.  相似文献   

9.
The purpose of this paper is to present sufficient conditions for the existence of optimal solutions to integer and mixed-integer programming problems in the absence of upper bounds on the integer variables. It is shown that (in addition to feasibility and boundedness of the objective function) (1) in the pure integer case a sufficient condition is that all of the constraints (other than non-negativity and integrality of the variables) beequalities, and (2) that in the mixed-integer caserationality of the constraint coefficients is sufficient. Some computational implications of these results are also given.  相似文献   

10.
We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems by designing a branch-and-bound algorithm, where at each node, the continuous relaxation is solved by a non-monotone Frank–Wolfe type algorithm with away-steps. Experimental results on portfolio optimization problems show that our approach can outperform the MISOCP solver of CPLEX 12.6 for instances where a linear risk-weighting function is considered.  相似文献   

11.
We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound by exploiting the integrality of the variables using suitably-defined lattice-free ellipsoids. Experiments show that our approach is very fast on both unconstrained problems and problems with box constraints. The main reason is that all expensive calculations can be done in a preprocessing phase, while a single node in the enumeration tree can be processed in linear time in the problem dimension.  相似文献   

12.
We address a generic mixed-integer bilevel linear program (MIBLP), i.e., a bilevel optimization problem where all objective functions and constraints are linear, and some/all variables are required to take integer values. We first propose necessary modifications needed to turn a standard branch-and-bound MILP solver into an exact and finitely-convergent MIBLP solver, also addressing MIBLP unboundedness and infeasibility. As in other approaches from the literature, our scheme is finitely-convergent in case both the leader and the follower problems are pure integer. In addition, it is capable of dealing with continuous variables both in the leader and in follower problems—provided that the leader variables influencing follower’s decisions are integer and bounded. We then introduce new classes of linear inequalities to be embedded in this branch-and-bound framework, some of which are intersection cuts based on feasible-free convex sets. We present a computational study on various classes of benchmark instances available from the literature, in which we demonstrate that our approach outperforms alternative state-of-the-art MIBLP methods.  相似文献   

13.
本文对线性约束不可分离凸背包问题给出了一种精确算法.该算法是拉格朗日分解和区域分割结合起来的一种分枝定界算法.利用拉格朗日分解方法可以得到每个子问题的一个可行解,一个不可行解,一个下界和一个上界.区域分割可以把一个整数箱子分割成几个互不相交的整数子箱子的并集,每个整数子箱子对应一个子问题.通过区域分割可以逐步减小对偶间隙并最终经过有限步迭代找到原问题的最优解.数值结果表明该算法对不可分离凸背包问题是有效的.  相似文献   

14.
Global solution of nonlinear mixed-integer bilevel programs   总被引:1,自引:0,他引:1  
An algorithm for the global optimization of nonlinear bilevel mixed-integer programs is presented, based on a recent proposal for continuous bilevel programs by Mitsos et al. (J Glob Optim 42(4):475–513, 2008). The algorithm relies on a convergent lower bound and an optional upper bound. No branching is required or performed. The lower bound is obtained by solving a mixed-integer nonlinear program, containing the constraints of the lower-level and upper-level programs; its convergence is achieved by also including a parametric upper bound to the optimal solution function of the lower-level program. This lower-level parametric upper bound is based on Slater-points of the lower-level program and subsets of the upper-level host sets for which this point remains lower-level feasible. Under suitable assumptions the KKT necessary conditions of the lower-level program can be used to tighten the lower bounding problem. The optional upper bound to the optimal solution of the bilevel program is obtained by solving an augmented upper-level problem for fixed upper-level variables. A convergence proof is given along with illustrative examples. An implementation is described and applied to a test set comprising original and literature problems. The main complication relative to the continuous case is the construction of the parametric upper bound to the lower-level optimal objective value, in particular due to the presence of upper-level integer variables. This challenge is resolved by performing interval analysis over the convex hull of the upper-level integer variables.  相似文献   

15.
Bilevel programming involves two optimization problems where the constraint region of the first level problem is implicitly determined by another optimization problem. In this paper we consider the bilevel linear/linear fractional programming problem in which the objective function of the first level is linear, the objective function of the second level is linear fractional and the feasible region is a polyhedron. For this problem we prove that an optimal solution can be found which is an extreme point of the polyhedron. Moreover, taking into account the relationship between feasible solutions to the problem and bases of the technological coefficient submatrix associated to variables of the second level, an enumerative algorithm is proposed that finds a global optimum to the problem.  相似文献   

16.
We develop a new modeling and solution method for stochastic programming problems that include a joint probabilistic constraint in which the multirow random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the probabilistic constraint. We then construct a tight threshold Boolean minorant for the pdBf. Any separating structure of the tight threshold Boolean minorant defines sufficient conditions for the satisfaction of the probabilistic constraint and takes the form of a system of linear constraints. We use the separating structure to derive three new deterministic formulations for the studied stochastic problem, and we derive a set of strengthening valid inequalities. A crucial feature of the new integer formulations is that the number of integer variables does not depend on the number of scenarios used to represent uncertainty. The computational study, based on instances of the stochastic capital rationing problem, shows that the mixed-integer linear programming formulations are orders of magnitude faster to solve than the mixed-integer nonlinear programming formulation. The method integrating the valid inequalities in a branch-and-bound algorithm has the best performance.  相似文献   

17.
We propose a family of retrospective optimization (RO) algorithms for optimizing stochastic systems with both integer and continuous decision variables. The algorithms are continuous search procedures embedded in a RO framework using dynamic simplex interpolation (RODSI). By decreasing dimensions (corresponding to the continuous variables) of simplex, the retrospective solutions become closer to an optimizer of the objective function. We present convergence results of RODSI algorithms for stochastic “convex” systems. Numerical results show that a simple implementation of RODSI algorithms significantly outperforms some random search algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).  相似文献   

18.
The selection of the branching variable can greatly affect the speed of the branch and bound solution of a mixed-integer or integer linear program. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We present a new approach that relies on estimating the impact of the candidate variables on the active constraints in the current LP relaxation. We apply this method to the problem of finding the first feasible solution as quickly as possible. Empirical experiments demonstrate a significant improvement compared to a state-of-the art commercial MIP solver.  相似文献   

19.
Global optimization of mixed-integer bilevel programming problems   总被引:1,自引:0,他引:1  
Two approaches that solve the mixed-integer nonlinear bilevel programming problem to global optimality are introduced. The first addresses problems mixed-integer nonlinear in outer variables and C2-nonlinear in inner variables. The second adresses problems with general mixed-integer nonlinear functions in outer level. Inner level functions may be mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in inner integer variables, and linear in inner continuous variables. This second approach is based on reformulating the mixed-integer inner problem as continuous via its vertex polyheral convex hull representation and solving the resulting nonlinear bilevel optimization problem by a novel deterministic global optimization framework. Computational studies illustrate proposed approaches.  相似文献   

20.
In this paper, we investigate the production order scheduling problem derived from the production of steel sheets in Shanghai Baoshan Iron and Steel Complex (Baosteel). A deterministic mixed integer programming (MIP) model for scheduling production orders on some critical and bottleneck operations in Baosteel is presented in which practical technological constraints have been considered. The objective is to determine the starting and ending times of production orders on corresponding operations under capacity constraints for minimizing the sum of weighted completion times of all orders. Due to large numbers of variables and constraints in the model, a decomposition solution methodology based on a synergistic combination of Lagrangian relaxation, linear programming and heuristics is developed. Unlike the commonly used method of relaxing capacity constraints, this methodology alternatively relaxes constraints coupling integer variables with continuous variables which are introduced to the objective function by Lagrangian multipliers. The Lagrangian relaxed problem can be decomposed into two sub-problems by separating continuous variables from integer ones. The sub-problem that relates to continuous variables is a linear programming problem which can be solved using standard software package OSL, while the other sub-problem is an integer programming problem which can be solved optimally by further decomposition. The subgradient optimization method is used to update Lagrangian multipliers. A production order scheduling simulation system for Baosteel is developed by embedding the above Lagrangian heuristics. Computational results for problems with up to 100 orders show that the proposed Lagrangian relaxation method is stable and can find good solutions within a reasonable time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号