首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1−xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1−xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1−xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.  相似文献   

3.
Concentration dependence of NaCl salting of lysozyme was investigated in the range of 0.5-9 mM lysozyme concentration in 0.1 M sodium acetate buffer, pH=4.25and the concentration of NaCl up to 0.1 M. Calorimetric experiments were performed with the use of a titration ITC Omega MicroCal calorimeter. It was found that the estimated number of bonding sites depended on the lysozyme concentration. For infinitely diluted lysozyme solution, the number of binding sites could be roughly estimated to ∼50. In the range of 2-9 mM protein concentration, the number of weakly binding (K=2.7±0.8 M−1) sites on the protein surface was estimated to 35±7. McMillan and Mayer’s approach reduced to the third order virial coefficients demonstrates that besides the dominating effect of the protein—salt interaction (a11) the coefficient describing the lysozyme aggregation upon salt addition (a12) is statistically significant.  相似文献   

4.
An amperometric method for the rapid detection of Escherichia coli (E. coli) by flow injection analysis (FIA) using an IrO2–Pd chemically modified electrode (CME) was developed in this paper. The method is based on a good marker β-d-galactosidase which was found in E. coli strains. β-d-galactosidase was produced by the induction of isopropyl β-d-thiogalactopyranoside (IPTG) and released from E. coli cells through the permeabilization of both polymyxin B nonapeptide and lysozyme to E. coli cells wall. The released β-d-galactosidase could catalyze the hydrolysis of the substrate p-aminophenyl β-d-galactopyranoside (PAPG) in the culture medium to produce 4-aminophenol which was proportional to the concentration of E. coli. Hence, E. coli could be detected by the determination of 4-aminophenol. An IrO2–Pd CME, which showed high sensitivity in determination of 4-aminophenol, was prepared as the electro-detector in FIA. The amplified response current of 4-aminophenol obtained at the IrO2–Pd CME was linear with the concentration of E. coli ranging from 2.0 × 102 to 1.0 × 106 cfu/mL, the detection limit of this method to E. coli was 150 cfu/mL and the complete assay could be performed in 3 h.  相似文献   

5.
E. coli O157:H7 is a pathogenic bacterium producing verotoxins that could lead to serious complications such as hemolytic uremia syndrome. Fast detection of such pathogens is important. For rapid detection, aptamers are quickly gaining traction as alternative biorecognition molecules besides conventional antibodies. Several DNA aptamers have been selected for E. coli O157:H7. Nonetheless, there has not been a comparative study of the binding characteristics of these aptamers. In this work, we present a comprehensive analysis of binding characteristics including binding affinity (Kd) and binding capacity (Bmax) of DNA-based aptamers for E. coli O157:H7 using qPCR. Our results show that aptamer E18R has the highest binding capacity to E. coli 157:H7 and the highest specificity over non-pathogenic E. coli strains K12 and DH5α. Our study also finds that the common biotin-tag modification at 5′ end typically changes the binding capacity significantly. For most of the selected aptamers, the binding capacity after a biotin-tag modification decreases. There exists a discrepancy in the binding capability between the selected aptamer and the aptamer used for detection. Our study also shows that a lower concentration of Mg2+ ions in the binding buffer leads to a decrease in the binding capacity of E17F and E18R, while it does not affect the binding capacity of S1 and EcoR1.  相似文献   

6.
The proteins of SMC family are characterized by having Walker A and B sites. The Escherichia coli RecN protein is a prokaryotic member of SMC family that involved in the induced excision of Tn10 and the repair of the DNA double strand breaks. In this work, the Walker A nucleotide binding site of the E. coli RecN protein was mutated by changing the highly conserved lysine residue 35 to the aspartic acid (D), designated as recNK35D. Reverse genetics was utilized to delete the entire recN gene (ΔrecN108) or introduce the recNK35D gene into the E. coli chromosomal DNA. The recNK35D cells showed decrease in the frequency of excision of Tn10 from gal76::Tn10 after treatment with mitomycin C compared to recN+ cells. The ΔrecN108 cells showed an un-induced increase in the frequency of Tn10 excision from gal76::Tn10 in rec+ background while, recBC sbcBC ΔrecN108 cells are completely deficient in Tn10 excision. The recombination proficiency is reduced in cells carrying recBC sbcBC cells in addition recNK35D mutation. We observed that the Walker A nucleotide binding site is important for the RecN protein. Strains that deleted recN gene are recombination deficient and more sensitive to mitomycin C than strains carrying recNK35D.  相似文献   

7.
The inactivation of Escherichia coli (E. coli) in water was investigated systematically with Ag-coated TiO2 thin film under UV-C irradiation. Compared with UV-C irradiation alone, the inactivation of E. coli by the UV/Ag-TiO2 process was enhanced and the photoreactivation of the bacteria was much repressed. Moreover, atomic force microscopy (AFM) measurements of E. coli showed that the presence of Ag-TiO2 thin film during UV exposure could expedite the destruction of cell wall and cell membrane, which was further confirmed by the formation of malondialdehyde (MDA) and leakage of intracellular potassium ion (K+) and protein. The results suggest that the cell structure destruction might be the major reason for the enhancement of inactivation efficiency, and the prepared Ag-TiO2 thin films show potential as a new improvement tool for UV-C disinfection.  相似文献   

8.
An efficient and simple protocol for the synthesis of a new class of diverse bis(indolyl)pyridines analogues of the marine alkaloid nortopsentin has been reported. A one-pot four-component condensation of 3-cyanocarbomethylindole, various aldehyde, 3-acetylindole, and ammonium acetate in glacial acetic acid led to the formation of 2,6-bis(1H-indol-3-yl)-4-(substituted-phenyl)pyridine-5-carbonitriles. Additionally, 2,6-bis(1H-indol-3-yl)-4-(benzofuran) pyridine-5-carbonitriles were prepared via a one-pot four-component condensation of 3-cyanocarbomethylindole, various N-substituted-indole-3-aldehydes, 2-acetylbenzofuran, and ammonium acetate. The synthesized compounds were evaluated for their ability to inhibit biofilm formation against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 6538 and the Gram-negative strain Escherichia coli ATCC 25922. Some of the new compounds showed a marked selectivity against the Gram-positive and Gram-negative strains. Remarkably, five compounds 4b, 7a, 7c, 7d and 8e demonstrated good antibiofilm formation against S. aureus and E. coli. On the other hand, the release of reducing sugars and proteins from the treated bacterial strains over the untreated strains was considered to explain the disruption effect of the selected compound on the contact cells of S. aureus and E. coli. Out of all studied compounds, the binding energies and binding mode of bis-indole derivatives 7c and 7d were theoretically the best thymidylate kinase, DNA gyrase B and DNA topoisomerase IV subunit B inhibitors.  相似文献   

9.
10.
One-electron oxidation of thionine has been studied using specific oxidizing radicals such as ClTl(II) and N3 generated by pulse radiolysis of aqueous solutions. The semioxidized thionine exhibited threepK’s indicating four conjugate acid-base forms. N3 radicals were found to be less efficient in oxidizing thionine as compared to Cl 2 , Tl2+ and Tl(OH)+. The rate constants for electron abstraction from thionine by Cl 2 , Tl2+, Tl(OH)+, Tl(OH)2 and N3 were evaluated. The spectra of different protonated forms of semioxidized thionine and the extinction coefficients at λmax are presented. Reaction of OH radicals with thionine gave transient products whose spectra and acid-base properties were different from those of semioxidized thionine. The rate constant for formation of the product transient agrees well with competition kinetic value for reaction of OH with thionine reported earlier.  相似文献   

11.
Within the frame of an ongoing project on glycosidase inhibitors, we have been interested in the synthesis of “heteroglycals”, namely, glycal analogues with sulfur or nitrogen in the ring. Glycals2 are well known for their applications in sugar chemistry in particular for glycosyl transfer.3 They are also known as glycosidase inhibitors through a slow chemical reaction with the enzyme. Recently exo-glycals emerged as a new class of glycals4 which showed interesting features as glycosidase inhibitors but also as precursors of glycomimetics such as C-glycosides.5 We have undertaken investigations on related heteroglycals: such compounds are of interest because they combine a planar geometry at the anomeric center and a possible charge site - both elements known to be important to mimic the transition state of the enzymatic glycoside hydrolysis process.6  相似文献   

12.
In this study, cellulose nanoparticles were prepared by acid hydrolysis, separately conjugated with allicin and lysozyme by a carbodiimide cross-linker, and characterized by scanning electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. Then, their antimicrobial properties were evaluated by the microdilution method and compared with allicin, lysozyme, and nanocellulose alone. The results showed that nanocellulose had few antimicrobial activities, but allicin-conjugated nanocellulose (ACNC) and lysozyme-conjugated nanocellulose (LCNC) had good antifungal and antibacterial effects against standard strains of Candida albicans, Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Noticeably, although allicin and lysozyme had different minimum inhibitory concentrations (MICs) against all strains, the same quantity of MIC50 and MIC90 was observed for both ACNC and LCNC. The authors suggest that both ACNC and LCNC can be used in industries as an antimicrobial agent in food packaging, inside foodstuffs, and in textile materials.  相似文献   

13.
The biological consequences of exposure to TiO2, UV light, and their combined effect were studied on the Escherichia coli (E. coli) cells. The damage of outer membrane was observed for the cells after treatment of TiO2 or UV light. TiO2 alone can break down lipopolysacchride (LPS), the outermost layer of the E. coli cells, but was not able to destroy peptidoglycan underneath. The same phenomenon was observed for E. coli under 500 W UV light treatment alone. However, the outer membrane of E. coli could be removed completely in the presence of both TiO2 and UV light, and the cells became elliptical or round without a mechanically strong network. From the analysis of the concentrations for Ca2+ and Mg2+, a large amount of Ca2+ and Mg2+ were detected in the solution of the treated cells by photo-catalysis, and this was attributed to the damage of LPS dispatches. After TiO2 or UV light treatment, a significant decrease in membrane fluidity of E. coli was found from an increase in fluorescence polarization by a fluorescence probe. The permeability of the treated cells increased to some degree that can be confirmed by quantum dots labeling technique.  相似文献   

14.
A 3-hydroxyisobutyrate dehydrogenase-encoding gene mmsB has been identified as one of the key genes responsible for the enhanced organic solvent tolerance (OST) of Pseudomonas putida JUCT1. In this study, the OST-related effect of two 3-hydroxyacid dehydrogenase family genes (mmsB and zwf) was investigated in Escherichia coli JM109. It was noted that the growth of E. coli JM109 was severely hampered in 4 % decalin after zwf knockout. Additionally, its complementation resulted in significantly enhanced solvent tolerance compared with its parent strain. Furthermore, E. coli JM109 carrying mmsB showed better OST capacity than that harboring zwf. To construct E. coli strains with an inheritable OST phenotype, mmsB was integrated into the genome of E. coli JM109 by red-mediated recombination. Using E. coli JM109(DE3) (ΔendA::mmsB) as host strain, whole-cell biocatalysis was successfully carried out in an aqueous/butyl acetate biphasic system with a remarkably improved product yield.  相似文献   

15.
The article continues studies of the recently discovered bacteriolytic activity of interleukin-2. It was detected earlier that interleukin (IL-2) possesses greater substrate specificity in comparison with chicken egg lysozyme. IL-2 disrupted the cell wall of Escherichia coli but did not lyse lysozyme substrates such as the cell walls of Micrococcus luteus and Bacillus subtilis. In the present study it is demonstrated for the first time that both IL-2 and chicken egg lysozyme are capable of lysing Lactobacillus plantarum. The effects of IL-2 and chicken egg lysozyme on Lactobacillus plantarum are compared with those on Escherichia coli. The dependences of the rate of lysis on the concentration of bacteriolytic factors and pH are studied.  相似文献   

16.
Three hen egg-white lysozyme inhibitor producing strains, Enterobacter cloacae M-1002, E. sakazakii M-1204, and Erwinia rhapontici H-55, were isolated from the soils of Taiwan. E. cloacae M-1002 appeared to be a promising inhibitor producing strain. One inhibitor was isolated from the culture broth of this strain. Maximum lysozyme inhibitory activity was obtained when the bacterium was grown aerobically in a medium consisting of 0.75% glucose, 0.25% beef extract, 1.0% polypeptone, and 0.25% sodium L-glutamate (pH 70) at 37 °C after 36–48 hrs. A hen egg-white lysozyme inhibitor was isolated from the culture broth of this strain. The inhibitor was purified from the culture supernatant of E. cloacae M-1002 by ammonium sulfate fractionation, DEAE-Sepharose CL-6B column chromatography and Fractogel TSK HW-55 (S) gel chromatography. Molecular weight of the purified lysozyme inhibitor was estimated to be 18, 000–20, 000 by SDS-PAGE and HPLC, and was composed of 71% amino acid and 23% total sugar. Serine, glycine, and alanine in a 3:2:1 molar ratio were the major amino acids, calculated to be 32.8, 20.3, and 11.4% (mol%), respectively. Glucose and mannose were the major sugar components of the inhibitor. The inhibitor was stable at pH 5 to 8 and was stable under 50 °C. Only hen egg-white lysozyme was inhibited by the purified inhibitor but not the other tested enzymes such as lysozyme of celery, turnip; lytic enzyme of Pseudomonas aeruginosa M-1001; chitinase/lysozyme of P. aeruginosa K-187; or cellulase and xylanase of Streptomyces actuosus A-151 and Aspergillus sp. G-393. The inhibition of lysozyme to the bacterial cell lytic activity by the purified inhibitor was 100%.  相似文献   

17.
The use of electrospun nanofibers as functional material in paper-based lateral flow assays (LFAs) was studied. Specific chemical features of the nanofibers were achieved by doping the base polymer, poly(lactic acid) (PLA), with poly(ethylene glycol) (PEG) and polystyrene8K-block-poly(ethylene-ran-butylene)25K-block-polyisoprene10K-Brij76 (K3-Brij76) (KB). The LFAs were assembled such that the sample flowed through the nanofiber mat via capillary action. Initial investigations focused on the sustainable spinning and assembly of different polymer structures to allow the LFA format. Here, it was found that the base polymer poly(vinyl alcohol) (PVA), which was shown to function well in microfluidic biosensors, did not work in the LFA format. In contrast, PLA-based nanofibers enabled easy assembly. Three relevant features were chosen to study nanofiber-based functionalities in the LFA format: adsorption of antibodies, quantification of results, and nonspecific binding. In particular, streptavidin-conjugated sulforhodamine B (SRB)-encapsulating liposomes were captured by anti-streptavidin antibodies adsorbed on the nanofibers. Varying the functional polymer concentration within the PLA base enabled the creation of distinct capture zones. Also, a sandwich assay for the detection of Escherichia coli O157:H7 was developed using anti-E. coli antibodies as capture and reporter species with horseradish peroxidase for signal generation. A dose–response curve for E. coli with a detection limit of 1.9?×?104 cells was achieved. Finally, functional polymers were used to demonstrate that nonspecific binding could be eliminated using antifouling block copolymers. The enhancement of paper-based devices using functionalized nanofibers provides the opportunity to develop a broad spectrum of sensitive and specific bioassays with significant advantages over their traditional counterparts.
Figure
Schematic of LFA format and single-step binding assay. A 1.75?×?5-mm nanofiber mat was placed directly on a backing card 4.5 mm in width, and a 1?×?20-cm absorbent pad was placed on the backing card overlapping the nanofiber mat by approximately 2 mm (a). The LFAs ran vertically in glass culture tubes. In the E. coli sandwich assay, E. coli (green) flowed through the anti-E. coli-modified nanofiber mat, followed by horseradish peroxidase (HRP)-conjugated (pink) anti-E. coli. When E. coli is present, a colorimetric signal results upon addition of HRP substrate (b), and when no E. coli is present, the HRP flows through the nanofiber mat and no signal is observed (c)  相似文献   

18.
Biosynthesis belongs to one of the new possibilities of nanoparticles preparation, whereas its main advantage is biocompatibility. In addition, the ability of obtaining the raw material for such synthesis from the soil environment is beneficial and could be useful for remediation. However, the knowledge of mechanisms that are necessary for the biosynthesis or effect on the bio-synthesizing organisms is still insufficient. In this study, we attempted to evaluate the effect of quantum dots (QDs) not only on a model organism of collembolans, but also on another soil organism—earthworm Eisenia fetida—and in also one widespread microorganism such as Escherichia coli. Primarily, we determined 28EC50 as 72.4 μmol L?1 for CdTe QDs in collembolans. Further, we studied the effect of QDs biosynthesis in E. fetida and E. coli. Using determination of QDs, low-molecular thiols and antioxidant activities, we found differences between both organisms and also between ways how they behave in the presence of Cd and/or Cd and Te. The biosynthesis in earthworms can be considered as its own protective mechanism; however, in E. coli, it is probably a by-product of protective mechanisms.  相似文献   

19.
The anti-Escherichia coli activities of four extracts in leaves of Dracontomelon dao, a traditional folk herb in China were investigated and compared by microcalorimetry. The four extracts are PE fraction, CHCl3 fraction, EtOAc fraction, and n-BuOH fraction. The heat flow power–time (HFP–time) curves of E. coli growth in the presence of the four extracts were measured using an ampoule method. Then the nine thermal kinetic parameters were obtained from the curves. From the result of principal component analysis, it can be seen that parameters k 1, k 2, P 1, and Q p2 might be the main parameters in evaluating the anti-E. coli effects. In the presence of CHCl3 fraction, EtOAc fraction, and n-BuOH fraction, k 2, Q p2 of E. coli decreased with increasing concentrations of the extracts. The EtOAc fraction was observed to have the strongest anti-bacterial activity with half-inhibitory concentration IC50 of 98.5 μg mL?1. So, it can be concluded that EtOAc fraction can be further developed as anti-bacterial bioactive fraction of leaves of Dracontomelon dao.  相似文献   

20.
DNA gyrase is a promising target for antibacterial agents. Several classes of small-molecule inhibitors have been discovered in recent decades, but none of these have reached the market. We have designed a small library of 1,2,4-oxadiazole/pyrrolidine hybrids with mid nanomolar inhibitory and potent antibacterial activities against DNA gyrase and topoisomerase IV. Compounds 9, 15, 16, 19, and 21 inhibited Escherichia coli DNA gyrase to a similar extent as the reference compound, novobiocin, with inhibitory values ranging from 120 nM to 270 nM. Compound 16 was one of the most potent compounds in the series, with an IC50 value of 120 nM against E. coli gyrase, which is lower than the IC50 value of novobiocin (170 nM). Compound 16 had the highest inhibitory activity, with minimum inhibitory concentrations (MIC) of 24 and 62 ng/mL against Staphylococcus aureus and E. coli, respectively, which compared favorably with ciprofloxacin (30 and 60 ng/mL, respectively). Compounds 9, 15, 19, and 21 were similar to novobiocin in terms of their activity against E. coli and S. aureus topoisomerase IV, while compound 16 was more potent than novobiocin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号