首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antioxidant properties of natural substances in irradiated fresh poultry   总被引:1,自引:0,他引:1  
This study was undertaken to determine if a combined treatment (marinating in natural plant extracts or vacuum) with irradiation could have a synergistic effect, in order to prevent the lipid oxidation resulting in the development of undesirable flavours. The fresh chicken legs were irradiated at 0,3 and 5 kGy. The fatty acids composition of lipids was identified using gas liquid chromatography. The effect of irradiation treatment combined with a pre-treatment on the fatty acids composition was followed. The day after irradiation, ten panallists were asked to evaluate, using the instruction scaling, the overall appearance, the odor, the flavor and the overall acceptability of the samples. The major fatty acids identified in lipids were oleic acid, palmitic acid, palmitoleic acid and stearic acid. Pre-treatments have a significant effect on linoleic acid (C18:2) and higher fatty acids. The unsaturated fatty acids derived from phospholipids appeared to be more affected by the irradiation dose: however, marinating have better protection on C18:2 derived from phospholipids. The results of sensory evaluation have shown a significant better odor and flavor for the irradiated chicken at 5 kGy than the control. No significant difference have been found between the marinated chicken, the chicken irradiated under vacuum and the control.  相似文献   

2.
The result of an experiment with irradiated frozen poultry meat is presented. The purpose of the experiment was to prove the benefit of irradiation treatment for elimination of pathogenic bacteria such as Salmonella and Campylobacter. We found that an average dose of 4.5 kGy kills the bacteria in the meat. Agroster was involved in an EU project on the identification of irradiation treatment of spices and data from this project are presented. Commercial irradiation of spices has been used for more than 15 years in Hungary, proving the benefit of this technology  相似文献   

3.
The current interest in “minimally processed foods” has attracted the attention for combination of mild treatments to improve food safety and shelf-life extention. The present study was conducted to evaluate the combined effect of gamma irradiation and incorporation of naturally occurring antimicrobial compounds on microbial and biochemistry characteristics of ground beef. Ground beef patties (23% fat ) were purchased from a local grocery store (IGA, Laval, Que., Canada) and divided into 3 separate treatment groups: (i) control (ground beef without additive), (ii) ground beef with 0.5% (w/w) ascorbic acid, and (iii) ground beef with 0.5% ascorbic acid and coated with a protein-based coating containing selected spices. Samples were irradiated at 0, 1, 2, and 3 kGy final dose at the CIC. Samples were stored at 4°C and evaluated periodically for microbial growth, total thiobarbituric reactive substances (TBARS) and free sulfydryl content. At the end of the storage period, Enterobacteriaceae, Lactic acid bacteria, Pseudomonas and Brochothrix thermosphacta were enumerated. Regardless of the treatment group, irradiation significantly (p0.05) reduced the total aerobic plate counts (APC). Irradiation doses of 1, 2, and 3 kGy produced immediate reduction of 2, 3, and 4 log units of APCs, respectively. Also, shelf-life periods were higher for ground beef samples containing food additives. Lactic acid bacteria and Brochothrix thermosphacta were more resistant to irradiation than Enterobacteriaceae and Pseudomonas. Concentration of TBARS and free sulfydryl concentrations were stabilized during post-irradiation storage for samples containing ascorbic acid and coated with the protein-based coating containing spices.  相似文献   

4.
The effect of γ-irradiation on the physico-chemical, organoleptic and microbiological properties of pork was studied, during 43 d of storage at 4°C. Irradiation treatments were carried out under air or vacuum packaging on fresh pork loins at a dose of 6 kGy, at two dose-rates: 2 and 20 kGy/h. Regardless of the type of packaging and dose-rate of irradiation, all irradiated pork samples were prevented from bacterial spoilage during 43 d. Meat redness and texture of irradiated loins were well preserved during storage especially when samples were stored under vacuum. The physico-chemical and organoleptic changes in pork loins appeared to be relatively little affected by the 6 kGy dose.  相似文献   

5.
Irradiation at medium doses in combination with cryogenic condition along the process to ensure the safety, quality and to extend the shelf-life of prepared meals have been investigated. Semi-concentrated black, ox-tail, chicken vegetable and chicken sweet corn soups were individually packed in a dry laminate pouch of PET 12 μ/LDPE adh.2 μ/Al–foil 7 μ/LDPE adh/LLDPE (C4) 50 μ under vacuum followed by freezing for 24 h at −18 °C prior to irradiation with doses of 1, 3, 5 and 7 kGy at cryogenic condition (−79 °C), respectively. Both the non-irradiated and irradiated prepared meals were then stored in refrigerator at 5±2 °C. Non-irradiated and the irradiated samples at 1 kGy were mostly damaged after a week of storage. Gamma irradiation at doses of 5–7 kGy for the soups could reduce microbial load by about 2–3 log cycles, respectively, without affecting the physical–chemical parameters and palatability within 2–3 months while the unirradiated samples could only withstand for 1 month storage time.  相似文献   

6.
Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab was investigated. Chicken kabab was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1–4 °C). Microbiological, chemical and sensory characteristics of chicken kabab were evaluated at 0–5 months of storage. Gamma irradiation decreased the microbial load and increased the shelf-life of chicken kabab. Irradiation did not influence the major constituents of chicken kabab (moisture, protein and fats). No significant differences (p>0.05) were observed for total acidity between non-irradiated (control) and irradiated chicken kabab. Thiobarbitric acid (TBA) values (expressed as mg malonaldehyde (MDA)/kg chicken kabab) and volatile basic nitrogen (VBN) in chicken kabab were not affected by the irradiation. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples.  相似文献   

7.
As there is no pasteurization procedure for the manufacture of fresh vegetable juice, both industry and consumers have sought a method for improving the storage stability and shelf-life of this category of products. In this study, the effects of commercially available, non-thermal pasteurization processes, such as gamma and UV irradiation, were compared for their efficacy in sanitizing fresh carrot juice (FCJ). FCJ was manufactured, packaged, and gamma irradiated with doses of 0, 1, 3, and 5 kGy. The manufactured FCJ was also passed through 4 UV light lamps at doses of 3.67, 4.69, and 6.50 kGy. The total aerobic bacterial count of the FCJ approached the legal limit (105 CFU/mL) after manufacturing. Both treatments were effective in reducing the number of total aerobic bacteria, and the reduced number was maintained during storage for 7 days. Gamma irradiation was more effective in suppressing microbial growth during storage. When the doses for UV treatment and gamma irradiation were higher, the inactivation effects were higher. The reduction of ascorbic acid content was greater upon gamma irradiation than UV treatment. No difference was found in the contents of flavonoids and polyphenols in FCJ after either treatment. After 3 days of refrigerated storage, the sensory scores of gamma- or UV-irradiated FCJ were superior to those of the control. The results indicate that both non-thermal treatments were effective in improving storage stability and extending shelf-life, but gamma irradiation was slightly better in suppressing microbial growth after treatment.  相似文献   

8.
Gamma-irradiation was found to affect the physicochemical properties of dry red kidney beans. The highest dose used (8 kGy) significantly (P0.05) modified the extent of deamidation, the number of sulfhydryl groups, as well as the solubility and the hydrophobicity of the protein. Deamidation, protein solubility and hydrophobicity all increased with the irradiation dose while the number of sulfhydryl groups was reduced by the treatment. Furthermore, irradiation also affected the outgrowth of natural filamentous fungi contaminants present on the dry beans. A dose of 1.5 kGy reduced the number of filamentous fungi by 2 log cycles immediately after treatment. However, the highest dose used (3 kGy) did not eliminate the filamentous fungi completely. Moreover, the filamentous fungi population was a lot less diversified on the irradiated samples. Species of Aspergillus sp. and Penicillium sp. were more abundant on the unirradiated beans while the beans irradiated at 3 kGy contained were predominantly infected by species of Rhizopus sp. , Cladosporium sp. and Alternaria sp.  相似文献   

9.
A variety of ready-to-cook meat products available in Indian supermarkets (mutton mince, chicken mince, chicken chunks, and chicken legs) were studied. The samples were irradiated (2.5 kGy), or left untreated as control, and stored at 0–3 °C for up to 21 days. The effect of irradiation on the microbiological, chemical, and sensory properties was evaluated at intervals during the storage period. Irradiated samples had a longer shelf-life at 0–3 °C compared with the corresponding non-irradiated samples. Fecal coliforms were eliminated by irradiation treatment. Radiation processed samples had lower counts of Staphylococcus spp. There were no significant organoleptic changes in irradiated samples stored at chilled temperatures.  相似文献   

10.
Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.  相似文献   

11.
In the present study the combined effect of gamma irradiation (1, 3 and 5 kGy) and storage at two temperatures: refrigeration (+4 °C) and frozen (?18 °C), on the shelf-life extension of fresh shrimp meat was investigated. The study was based on microbiological and physicochemical changes occuring in the shrimp samples. Total volatile base nitrogen values and trimethylamine values for irradiated shrimp samples were significantly lower than non-irradiated samples at both storage temperatures, and the rate of decrease was more pronounced in samples irradiated at the higher dose (p<0.05). Thiobarbituric acid values for irradiated shrimp samples were significantly higher than non-irradiated samples at both storage temperatures (p<0.05). pH values of shrimp samples were affected significantly by both irradiating dose and storage temperatures (p<0.05). Microbial counts for non-irradiated shrimp samples were higher than the respective irradiated samples at both storage temperatures (p<0.05). The results revealed that irradiation at high dose (5 kGy) might enhance lipid oxidation, although the growth of microorganisms and protein oxidation was inhibited.  相似文献   

12.
This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4°C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant (p0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant (p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination.  相似文献   

13.
In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients (R2) between absorbed doses (2.5–15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables (chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.  相似文献   

14.
Ionizing radiation is widely used as treatment technique for food preservation. It involves among others reduction of microbial contamination, disinfestations, sprout inhibition and extension of shelf life of food. However, the commercialization of irradiated food requires the availability of reliable methods to identify irradiated foodstuffs. In this paper, we present results on the application to irradiated chicken of this method, based on the detection, in muscle and skin samples, of the peaks of ions 98 Da and 112 Da, in a ratio approximately 4:1, typical of radiation induced 2-dodecylcyclobutanones (2-DCB). Aim of the work was also to study the time stability of the measured parameters in samples irradiated at 3 and 5 kGy, and to verify the efficacy of the treatment from a microbiological point of view. Our results show that, one month after irradiation at 3 kGy, the method is suitable using the skin but not the muscle, while the measured parameters are detectable in both samples irradiated at 5 kGy. The microbial population was substantially reduced even at 3 kGy.  相似文献   

15.
Effect of electron irradiation on nitrofurans and their metabolites   总被引:1,自引:0,他引:1  
Research on the degradation of aqueous furazolidone, nitrofurantoine and semicarbazide (SC) solutions, and 3-amino-2-oxazolidinone (AOZ) residues in tissues of chicken and crucian under electron beam irradiation have been carried out. Results showed that about 75% furazolidone and 70% nitrofurantoine degraded at 6 kGy dose, and SC with the initial concentration of 667 μg/L degraded by 94% at 12 kGy dose. While AOZ in the crucian and chicken degraded by 22.5% and 20.7%, respectively, after being irradiated at 12 kGy. The degradation conditions were investigated to provide a reference to improve irradiation techniques.  相似文献   

16.
Minimally processed cauliflower samples were irradiated, stored at 5 °C for 2 weeks and analyzed for sensory, physicochemical and microbiological qualities at 0th, 7th and 14th days. The data showed highest mean values of 7.93 and 7.57 for appearance and flavor, respectively, for 1.0 kGy treated samples. The D10 values of contaminating microorganisms on cauliflower were 0.20 (Escherischia coli) and 0.24 kGy (Salmonella paratyphae A.) and the resulting 5D10 value was 1.2 kGy. The study revealed that a dose of 1.5 kGy is enough for retention of quality and reduction of microbial load to 5D10 values in cauliflower during 2 weeks storage at refrigerated temperature.  相似文献   

17.
Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25°C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications.  相似文献   

18.
High-dose (higher than 30 kGy) irradiation has been used to sterilize specific-purposed foods for safe and long-term storage. The objective of this study was to investigate the effect of high-dose irradiation on the quality characteristics of ready-to-eat chicken breast in comparison with those of the low-dose irradiation. Ready-to-eat chicken breast was manufactured, vacuum-packaged, and irradiated at 0, 5, and 40 kGy. The populations of total aerobic bacteria were 4.75 and 2.26 Log CFU/g in the samples irradiated at 0 and 5 kGy, respectively. However, no viable cells were detected in the samples irradiated at 40 kGy. On day 10, bacteria were not detected in the samples irradiated at 40 kGy but the number of bacteria in the samples irradiated at 5 kGy was increased. The pH at day 0 was higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. The 2-thiobarbituric acid reactive substance (TBARS) values of the samples were not significantly different on day 0. However, on day 10, the TBARS value was significantly higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. There was no difference in the sensory scores of the samples, except for off-flavor, which was stronger in samples irradiated at 5 and 40 kGy than control. However, no difference in off-flavor between the irradiated ones was observed. After 10 days of storage, only the samples irradiated at 40 kGy showed higher off-flavor score. SPME-GC–MS analysis revealed that 5 kGy of irradiation produced 2-methylbutanal and 3-methylbutanal, which were not present in the control, whereas 40 kGy of irradiation produced hexane, heptane, pentanal, dimethly disulfide, heptanal, and nonanal, which were not detected in the control or the samples irradiated at 5 kGy. However, the amount of compounds such as allyl sulfide and diallyl disulfide decreased significantly in the samples irradiated at 5 kGy and 40 kGy.  相似文献   

19.
Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the samples were stored for 14 days at 4 °C. O2 levels in the packages of fresh-cut Iceberg lettuce decreased and CO2 levels increased with increasing radiation dose, suggesting that irradiation increased respiration rates of lettuce. Tissue browning of irradiated cut lettuce was less severe than that of non-irradiated, probably due to the lower O2 levels in the packages. However, samples irradiated at 3 and 4 kGy had lower maximum force and more severe sogginess than the non-irradiated control. In addition, ascorbic acid content of irradiated lettuce was 22–40% lower than the non-irradiated samples after 14 days of storage. The visual appearance of spinach was not affected by irradiation even at a dose of 4 kGy. Consumer acceptance suggested that more people would dislike and would not buy spinach that was treated at 3 and 4 kGy as compared to the non-irradiated sample. Overall, irradiation at doses of 1 and 2 kGy may be employed to enhance microbial safety of fresh-cut Iceberg lettuce and spinach while maintaining quality.  相似文献   

20.
Effect of gamma radiation on microbial population of natural casings   总被引:1,自引:0,他引:1  
The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganisms, agents of foodborn diseases.

The aim of this work is to evaluate the killing effect of gamma radiation of the resident microbial population of pork and beef casings, to improve their hygiene and safety.

Portions of fresh pork (small intestines and colon) and dry beef casings were irradiated in a Cobalt 60 source with with absorbed doses of 1,2,5 and 10 kGy.

The D10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号