首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly (p<0.05) increased in all irradiated samples of the plant.  相似文献   

2.
Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the samples were stored for 14 days at 4 °C. O2 levels in the packages of fresh-cut Iceberg lettuce decreased and CO2 levels increased with increasing radiation dose, suggesting that irradiation increased respiration rates of lettuce. Tissue browning of irradiated cut lettuce was less severe than that of non-irradiated, probably due to the lower O2 levels in the packages. However, samples irradiated at 3 and 4 kGy had lower maximum force and more severe sogginess than the non-irradiated control. In addition, ascorbic acid content of irradiated lettuce was 22–40% lower than the non-irradiated samples after 14 days of storage. The visual appearance of spinach was not affected by irradiation even at a dose of 4 kGy. Consumer acceptance suggested that more people would dislike and would not buy spinach that was treated at 3 and 4 kGy as compared to the non-irradiated sample. Overall, irradiation at doses of 1 and 2 kGy may be employed to enhance microbial safety of fresh-cut Iceberg lettuce and spinach while maintaining quality.  相似文献   

3.
High-dose (higher than 30 kGy) irradiation has been used to sterilize specific-purposed foods for safe and long-term storage. The objective of this study was to investigate the effect of high-dose irradiation on the quality characteristics of ready-to-eat chicken breast in comparison with those of the low-dose irradiation. Ready-to-eat chicken breast was manufactured, vacuum-packaged, and irradiated at 0, 5, and 40 kGy. The populations of total aerobic bacteria were 4.75 and 2.26 Log CFU/g in the samples irradiated at 0 and 5 kGy, respectively. However, no viable cells were detected in the samples irradiated at 40 kGy. On day 10, bacteria were not detected in the samples irradiated at 40 kGy but the number of bacteria in the samples irradiated at 5 kGy was increased. The pH at day 0 was higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. The 2-thiobarbituric acid reactive substance (TBARS) values of the samples were not significantly different on day 0. However, on day 10, the TBARS value was significantly higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. There was no difference in the sensory scores of the samples, except for off-flavor, which was stronger in samples irradiated at 5 and 40 kGy than control. However, no difference in off-flavor between the irradiated ones was observed. After 10 days of storage, only the samples irradiated at 40 kGy showed higher off-flavor score. SPME-GC–MS analysis revealed that 5 kGy of irradiation produced 2-methylbutanal and 3-methylbutanal, which were not present in the control, whereas 40 kGy of irradiation produced hexane, heptane, pentanal, dimethly disulfide, heptanal, and nonanal, which were not detected in the control or the samples irradiated at 5 kGy. However, the amount of compounds such as allyl sulfide and diallyl disulfide decreased significantly in the samples irradiated at 5 kGy and 40 kGy.  相似文献   

4.
This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.  相似文献   

5.
The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4′-glucoside (Q4′G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4′G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1–256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.  相似文献   

6.
The purpose of this study was to evaluate microbial populations, Hunter's color values (L?, a?, b?) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food.  相似文献   

7.
The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.  相似文献   

8.
The ethanolic extracts of red beet (Beta vulgaris L.) hairy root were used to investigate the removal of color and improvement of biological activity for enhanced industrial applications. The extracts were exposed to gamma rays ranging from 2.5 to 30 kGy. The red beet hairy root is composed of two major red-colorants, betanin and isobetanin. Gamma ray radiation at 5 kGy remarkably reduced the levels of the major colorants by 94% and the reddish color was eliminated by doses greater than 10 kGy. Color removal was likely due to the gamma ray radiolysis of ethanol. Although details on the mechanism responsible for the decay of the chromophore have not been entirely determined, our results suggest that the free radicals that are produced during this process are capable of destroying the chromophore group in isobetanin, thus bleaching the substrate solution. In spite of the degradation of the major colorants, the biological activities of constituents of the extract such as DPPH radical scavenging and tyrosinase inhibition were negligibly affected by the gamma ray radiation up to 20 kGy. The antioxidant activity was 92.7% in control samples and 90.0–92.0% in irradiated samples (2.5–20 kGy), and a slight decrease to 87.5% was observed for gamma ray radiation at 30 kGy. In addition, tyrosinase inhibition activity has also the same pattern; the activity is slightly increased from 50.7% of control to 49.1–52.8% of irradiated samples (2.5–20 kGy) with a 46.8% at 30 kGy.  相似文献   

9.
The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5–1.0 kGy for disinfestation and 0.5–5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses, (∼1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.  相似文献   

10.
In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach ‘practical sterility’ of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.  相似文献   

11.
Although considered the most complete food and nutritionally shown to be part of a healthy diet, the egg is the source of many eating disorders, especially for infants. Irradiation has been used in studies not only as a means of microbiological control, but also on its structural action in the substances molecules and has been used to reduce the allergenic effects. The aim of this study was to evaluate the sensory effects of Co60 gamma radiation on proteins, enabling the acceptability of allergy food for genetically intolerant people. Eggs commercial fresh and freeze-dried and subjected to gamma irradiation by Co60 source at doses 0 (control), 10 kGy; 20 kGy and 30 kGy and rates of doses of 19.4 kGy/h and 31.8 kGy/h. Acceptability test was used by the hedonic scale, since it is necessary to know the “affective status” of consumers for the product, implying a preference, i.e. the most preferred samples are the most accepted and vice versa. The samples were presented as the habit of consumption (cooked) to a group of 41 adults panelists of both gender, aged from 21 to 40 years, and served under complete block design balanced with respect to the order of presentation. The evaluated attributes was flavor, appearance and overall acceptability. In general, for boiled eggs and freeze-dried, it was observed that the control sample was the most acceptable, followed by the sample irradiated with 10 kGy in both dose rates. In addition, panelists presented in testimony that they found interesting changes due to irradiation; also said they would not buy the product because of the marked change in appearance and smell, which at one point he ended up in disgust and detract from sales of the product, but they would buy irradiated with 10 kGy in both dose rate and dose of 20 kGy at a dose rate of 19.4 kGy/h.  相似文献   

12.
In order to study the growth promotion behavior of sodium alginate (SA) on vegetable (red amaranth, Amaranthus cruentus L.), 3% aqueous solution of SA was irradiated by γ-radiation (Co-60) of various total doses (12.5–50.0 kGy) at a dose rate of 3.5 kGy/h. Viscosity of the irradiated SA was found to decrease with increase in the radiation dose. The average molecular weight was also decreased from 104 to 103 orders. Red amaranth was cultivated in 18 different individual plots and SA solution (150 ppm) was applied on red amaranth after 10 days of seedlings at every 6 days interval. The morphological characters of vegetables were studied randomly in different unit plots. The irradiated SA of 37.5 kGy at 150 ppm solution showed the best performance. Dry matter of red amaranth significantly increased at 37.5 kGy of irradiated alginate treatment which was about 50% higher than that of the untreated samples. The effect of SA on red amaranth was found significant increase; i.e. plant height (17.8%), root length (12.7%), number of leaf (5.4%) and maximum leaf area (2%) compared to that of the control vegetative plant production.  相似文献   

13.
For most of prepackaged foods a 10 kGy radiation dose is considered the maximum dose needed; however, the commercially available and practically accepted packaging materials must be suitable for such application. This work describes the application of ionizing radiation on several packaged food items, using 5 dehydrated food items, 5 ready-to-eat meals and 5 ready-to-eat food items irradiated in a 60Co gamma source with a 3 kGy dose. The quality evaluation of the irradiated samples was performed 2 and 8 months after irradiation. Microbiological analysis (bacteria, fungus and yeast load) was performed. The sensory characteristics were established for appearance, aroma, texture and flavor attributes were also established. From these data, the acceptability of all irradiated items was obtained. All ready-to-eat food items assayed like manioc flour, some pâtés and blocks of raw brown sugar and most of ready-to-eat meals like sausages and chicken with legumes were considered acceptable for microbial and sensory characteristics. On the other hand, the dehydrated food items chosen for this study, such as dehydrated bacon potatoes or pea soups were not accepted by the sensory analysis. A careful dose choice and special irradiation conditions must be used in order to achieve sensory acceptability needed for the commercialization of specific irradiated food items.  相似文献   

14.
The study was conducted to compare the radiation types of a gamma ray and an electron beam for the inhibition and reduction of a food allergy. OVA (2 mg/ml) were irradiated at 3, 5, 7 and 10 kGy. Patterns detected by the SDS-PAGE and an immunoblot showed that the intact OVA band disappeared and that it was dependant upon the radiation doses regardless of the radiation types. Binding abilities of the irradiated OVA against the monoclonal IgG and the egg allergic patients’ IgE decreased due to a conformational change of the epitope, but differences from using the two different radiation types were not observed. The results indicate that both the radiation types can be used for an inhibition and a reduction of a food allergy regardless of the radiation types.  相似文献   

15.
A simple technique of microgel electrophoresis of single cells (DNA comet assay) was used to detect DNA comets in irradiated quail meat samples. Obtained DNA comets were evaluated by both photomicrographic and image analysis. Quail meat samples were exposed to radiation doses of 0.52, 1.05, 1.45, 2.00, 2.92 and 4.00 kGy in gamma cell (gammacell 60Co, dose rate 1.31 kGy/h) covering the permissible limits for enzymatic decay and stored at 2 °C. The cells isolated from muscle (chest, thorax) in cold PBS were analyzed using the DNA comet assay on 1, 2, 3, 4, 7, 8 and 11 day post irradiation. The cells were lysed between 2, 5 and 9 min in 2.5% SDS and electrophorosis was carried out at a voltage of 2 V/cm for 2 min. After propidium iodide staining, the slides were evaluated through a fluorescent microscope. In all irradiated samples, fragmented DNA stretched towards the anode and damaged cells appeared as a comet. All measurement data were analyzed using BS 200 ProP with software image analysis (BS 200 ProP, BAB Imaging System, Ankara, Turkey). The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. The values of tail DNA%, tail length and tail moment were significantly different and identical between 0.9 and 4.0 kGy dose exposure, and also among storage times on day 1, 4 and 8. In conclusion, the DNA Comet Assay EN 13784 standard method may be used not only for screening method for detection of irradiated quail meat depending on storage time and condition but also for the quantification of applied dose if it is combined with image analysis. Image analysis may provide a powerful tool for the evaluation of head and tail of comet intensity related with applied doses.  相似文献   

16.
Aqua cultured fish (sea bream) were irradiated by Cobalt-60 at commercial irradiation facility at dose of 2.5 and 5 kGy at 2–4 °C. The proximate composition, fatty acid and amino acid composition changes of irradiated aqua cultured sea bream (Sparus aurata) of Aegean Sea were investigated. Total saturated (28.01%) and total monounsaturated (28.42%) fatty acid contents of non-irradiated decreased content of 27.69–27.97% for 2.5 kGy irradiated groups and increased content of 28.33–28.56% for 5 kGy irradiated groups after irradiation process. Total polyunsaturated fatty acid content for irradiated samples was lower than that of non-irradiated samples. Aspartic acid, glutamic acid, serine, glycine, arginine, alanine, tyrosine, cystine, tryptophan, lysine and proline contents for 2.5 and 5 kGy irradiated sea bream are significantly different (p<0.05).  相似文献   

17.
This study aimed at evaluating the acceptance of MP watermelon and pineapple exposed to 1.0 and 2.5 kGy compared to non-irradiated samples. No significant differences were observed in liking between irradiated and non-irradiated samples, and also between doses of 1.0 and 2.5 kGy. Significant differences in sourness (pineapple) or sweetness (watermelon) and between intention of purchase of irradiated and non-irradiated fruits were not observed as well. Results showed that MP watermelon and pineapple could be irradiated with doses up to 2.5 kGy without significant changes in acceptability.  相似文献   

18.
The study is aimed at the optimization of gamma irradiation treatment of sun-dried apricots for quality maintenance and quarantine purposes. Sun-dried apricots pre-treated with potassium meta-bisulphite (KMS) at 2.5% w/v were procured from progressive apricot grower of district Kargil, Ladakh region of Jammu and Kashmir state. The sun-dried apricots were packed in 250 gauge polyethylene packs and gamma irradiated in the dose range 1.0–3.0 kGy. The gamma irradiated fruit including control was stored under ambient (15±2–25±2 °C, RH 70–80%) conditions and periodically evaluated for physico-chemical, sensory and microbial quality parameters. Radiation treatment at dose levels of 2.5 and 3.0 kGy proved significantly (p≤0.05) beneficial in retention of higher levels of β-carotene, ascorbic acid, total sugars and color values without impairing the taste as perceived by the sensory panel analysists. The above optimized doses retained the β-carotene content of sun-dried apricots to the extent of 71.2% and 72.6% compared to 63.9% in control samples after 18 months of storage. Irradiation treatment facilitated the release of residual sulfur dioxide in KMS pre-treated sun-dried apricots significantly (p≤0.05) below the prescribed limit for dried products. During storage, two-fold decrease in sulfur dioxide content was recorded in irradiated samples (3.0 kGy) as compared to 16.9% in control. The above optimized doses besides maintaining the higher overall acceptability of sun-dried apricots resulted in 5 log reductions in microbial load just after irradiation and 1.0 and 1.3 log reductions in yeast and mold and bacterial count after 18 months of ambient storage.  相似文献   

19.
Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.  相似文献   

20.
In the present study, radiation processing of minimally processed green gram and garden pea sprouts was carried out at doses 1 and 2 kGy. The effect of this treatment on different quality parameters like vitamin C content, total carotenoids content, sensory quality, texture, and color was determined over a storage period of 12 days at two different temperatures, a 4 and 8 °C. It was observed that treatment of irradiation (1 and 2 kGy) and storage period did not have any significant effect on vitamin C content of control as well as irradiated sprout samples stored at 4 and 8 °C. Total carotenoids content of sprouts stored at 4, as well as at 8 °C, for 12 days remained almost unchanged after irradiation as well as during storage. Sensory evaluation studies showed that irradiation had no significant effect (p>0.05) on the ratings of any of the sensory attributes in green gram as well as garden pea sprouts and, thus, did not alter the overall acceptability of the irradiated sprouts. Textural studies revealed that there was no significant change (p>0.05) in the firmness of irradiated sprouts (1 and 2 kGy) as compared to control samples at both the temperatures. Storage period of 12 days also did not affect the firmness of sprouts significantly. Color measurement results indicated no drastic change in the color coordinates of the green gram samples except greenness of controls stored at both the temperatures, which showed insignificant decrease in the a* values. Thus, the nutritional as well as sensory quality of minimally processed green gram and garden pea sprouts did not alter significantly after gamma irradiation with a dose of 1 and 2 kGy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号