首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, a facile co-precipitation process for preparing mono-dispersed core–shell structure nanoparticles is reported. The 110 nm SiO2 cores coated with an yttrium aluminum garnet (Y3Al5O12) layer doped with Er3+ were synthesized and the influence of the concentration ratio of [urea]/[metal ions] on the final product was investigated. The structure and morphology of samples were characterized by the X-ray powder diffraction, Fourier transform IR spectroscopy and transmission electron microscopy, respectively. The results indicate that a layer of well-crystallized garnet Y3Al5O12:Er3+ were successfully coated on the silica particles with the thickness of 20 nm. The near infrared and upconversion luminescent spectra of the SiO2@Y3Al5O12:Er3+ powders further confirm that a Y3Al5O12:Er3+ coating layer has formed on the surface of silica spherical particles.  相似文献   

2.
The optical and magnetooptical properties of the new granular nanocomposites (CoFeB)/(SiO2) and (CoFeZr)/(Al2O3), which are grains of amorphous ferromagnetic alloys embedded in dielectric matrices, have been studied. The dependence of the optical, magnetooptical, and magnetic properties of the nanocomposites on their qualitative and quantitative composition, as well as on the conditions of their preparation, was investigated. Spectra of the dielectric functions ε = ε1 ? iε2 were obtained by the ellipsometric method in the range 0.6–5.4 eV. Above 4.2 eV, the absorption coefficient of the (CoFeB)/(SiO2) composites was found to be close to zero for all magnetic-grain concentrations. The polar Kerr effect measured at a photon energy of 1.96 eV in dc magnetic fields of up to 15 kOe reaches values as high as 0.25°–0.3° for these nanocomposites and depends only weakly on the conditions of preparation. On the other hand, the (CoFeZr)/(Al2O3) nanostructures reveal a considerable difference in the concentration dependences of the Kerr effect between samples prepared in a dc magnetic field and in zero field.  相似文献   

3.
This article describes the ultraviolet (UV) protection of MgO and Al2O3 nanoparticles embedded electrospun polyacrylonitrile (PAN) nanofibrous mats. UV radiation is a harmful part of sunlight and prolonged exposure to it can cause serious skin damages. In this research, nanofibrous mats consisting of nanofibers with different diameters containing different amounts of MgO, Al2O3, MgO Plus, and Al2O3 Plus nanoparticles were produced, and their UV-protection was measured. The specific surface area of MgO, MgO Plus, Al2O3, and Al2O3 Plus nanoparticles was 230, 600, 275, and 550 m2/g, respectively. The mean diameter of electrospun PAN nanofibers embedded with metal oxide nanoparticles was in the range of 665–337 nm. The results showed that the UV-protection (shielding) capability of the mats strongly depends on fiber diameter; in fact a thin mat of nanofibers has a much stronger UV-protection in comparison to a thicker mat composed of regular fibers. UV transmission is reduced as a result of embedding MgO and Al2O3 nanoparticles in the electrospun PAN nanofibrous mats. MgO Plus and Al2O3 Plus show higher UV-protection than MgO and Al2O3.  相似文献   

4.
A facile room-temperature synthesis has been developed to prepare colloidal Mn3O4 and γ-Fe2O3 nanoparticles (5 to 25 nm) by an ultrasonic-assisted method in the absence of any additional nucleation and surfactant. The morphology of the as-prepared samples was observed by transmission electron microscopy. High-resolution transmission electron microscopy observations revealed that the as-synthesized nanoparticles were single crystals. The magnetic properties of the samples were investigated with a superconducting quantum interference device magnetometer. The possible formation process has been proposed.  相似文献   

5.
A thick Al2O3/aluminum (Al) structure has been fabricated by oxidation of Al with 68wt% and 98wt% nitric acid (HNO3) aqueous solutions at room temperature. Measurements of the Al2O3 thickness vs. the oxidation time show that reaction and diffusion are the rate-determining steps for oxidation with 68wt% and 98wt% HNO3 solutions, respectively. Observation of transmission electron micrographs shows that the Al2O3 layer formed with 68wt% HNO3 has a structure with cylindrically shaped pores vertically aligned from the Al2O3 surface to the Al2O3/Al interface. Due to the porous structure, diffusion of HNO3 proceeds easily, resulting in the reaction-limited oxidation mechanism. In this case, the Al2O3/Al structure is considerably rough. The Al2O3 layer formed with 98wt% HNO3 solutions, on the other hand, possesses a denser structure without pores, and the Al2O3/Al interface is much smoother, but the thickness of the Al2O3 layer formed on crystalline Al regions is much smaller than that on amorphous Al regions. Due to the relatively uniform Al2O3 thickness, the leakage current density flowing through the Al2O3 layer formed with 68wt% HNO3 is lower than that formed with 98wt% HNO3.  相似文献   

6.
71Ga magic-angle spinning (MAS) nuclear magnetic resonance (NMR) has been used to characterize the structural evolution of nanocrystalline Ga2O3 samples prepared by sol-gel and ball-milling techniques. 29Si and 27Al MAS NMR have also been used to characterize silica and alumina Zener pinning phases. 71Ga NMR parameters are reported for the α- and β-Ga2O3 phases, and more tentatively for the δ-Ga2O3 phase. By simulating the octahedrally coordinated gallium NMR line of β-Ga2O3 using Gaussian distributions in χQ, the extent of disorder in the Ga2O3 crystallites has been quantified. The ball-milled samples contain much more inherent disorder than the sol-gel samples in the nano-phase, which was observed from simulations of the 71Ga MAS NMR spectra. The silica pinning phase produced highly crystalline and densely aggregated nanocrystalline Ga2O3, as well as the smallest nanocrystal sizes. Authors' address: Mark E. Smith, Department of Physics, University of Warwick, Coventry CV4 7AL, UK  相似文献   

7.
Superconductivity in the interface region between metallic Al and its oxide, Al2O3, has been detected at about 45 K in the measured dynamic magnetic susceptibility.  相似文献   

8.
Four nanocrystalline ZrO2(Y)- and Al2O3-based powders synthesized by plasma spray pyrolysis have been studied. It has been shown that the ZrO2(3Y)-based system with second component Al2O3 forms a nonequilibrium solid solution ZrO2(3Y, Al) with the tetragonal structure. It has been found that the existence of an component (ZrO2(Y)) insoluble in the coarse-grained state in Al2O3-based systems causes the delay of the γ → α transformation and decreases the size of the coherently scattering domains of formed nanosized modifications of Al2O3.  相似文献   

9.
The magnetization of a series of Al2O3 with different particle sizes and their 27Al NMR spectra have been studied at room temperature. The field dependence of the magnetization demonstrated the existence of a long-range ferromagnetic order in a small part of the sample at room temperature; however, the relative volume of this contribution was very small (less than 1%), and this seems likely due to an impurity phase. The NMR spectra did not contain any lines of metallic aluminum the existence of which in these nanooxides was assumed before in a surface layer of the nanoparticles, according to the data of other techniques. The data on the phase composition and the charge distribution in different phases of the Al2O3 nanoparticles have been obtained. The change in the mean particle size (by a factor of almost three) only insignificantly changed their phase composition.  相似文献   

10.
It is shown that a nonequilibrium solid solution ZrO2(3Y, Al) with tetragonal structure is formed in systems based on ZrO2(3Y) with Al2O3 as a second component. A delay in the γ → α Al2O3 transformation and a reduction in the size of the coherently scattering domain of modifications are observed in systems based on Al2O3 with ZrO2(Y) as a second component.  相似文献   

11.
The phase chemical composition of an Al2O3/Si interface formed upon molecular deposition of a 100-nm-thick Al2O3 layer on the Si(100) (c-Si) surface is investigated by depth-resolved ultrasoft x-ray emission spectroscopy. Analysis is performed using Al and Si L2, 3 emission bands. It is found that the thickness of the interface separating the c-Si substrate and the Al2O3 layer is approximately equal to 60 nm and the interface has a complex structure. The upper layer of the interface contains Al2O3 molecules and Al atoms, whose coordination is characteristic of metallic aluminum (most likely, these atoms form sufficiently large-sized Al clusters). The shape of the Si bands indicates that the interface layer (no more than 10-nm thick) adjacent to the substrate involves Si atoms in an unusual chemical state. This state is not typical of amorphous Si, c-Si, SiO2, or SiOx (it is assumed that these Si atoms form small-sized Si clusters). It is revealed that SiO2 is contained in the vicinity of the substrate. The properties of thicker coatings are similar to those of the 100-nm-thick Al2O3 layer and differ significantly from the properties of the interfaces of Al2O3 thin layers.  相似文献   

12.
Thin solid polymer electrolytes based on polyethylene oxide (PEO) and silver triflate (AgCF3SO3) dispersed with various concentrations of aluminum oxide (Al2O3) nanoparticles have been prepared by solution casting technique. These thin polymer films are found to have thickness of the order of 30 to 100 μm. The X-ray diffraction (XRD) patterns have indicated the amorphous nature of the polymer electrolyte. The differential scanning calorimeter (DSC) traces showed slight change in the glass transition temperature (T g) whereas the degree of crystallization (X c) decreases markedly due to the addition of alumina nanoparticles. Fourier transform infrared (FTIR) spectral analysis of all these samples has revealed the presence of absorption bands around 1,000 cm−1; thus indicating the complexation of silver ions with oxygen in PEO. Employing the Wagner’s polarization technique as the standard method, the total ionic transference number for the complexed polymer electrolyte was found to be approximately unity thereby revealing that the significant contribution to electrical conduction was due to ions only. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, December 7–9, 2006  相似文献   

13.
Although Gd2O3 (gadolinia) nanoparticle is the subject of intense research interest due to its magnetic property as well as controllable emission wavelengths by doping of various lanthanide ions, it is known to be difficult to prepare monodisperse crystalline gadolinia nanoparticles because it requires high temperature thermal annealing process to enhance the crystallinity. In this article, we demonstrate the synthesis of hollow nanoparticles of crystalline Gd2O3 by employing poly(N-vinylpyrrolidone) (PVP) to stabilize the surface of Gd(OH)CO3·H2O nanoparticles and to successively form SiO2 shell as a protecting layer to prevent aggregation during calcinations processes. Silica shells could be selectively removed after calcinations by a treatment with basic solution to give hollow nanoparticles of crystalline Gd2O3. The formation mechanism of hollow nanoparticles could be suggested based on several characterization results of the size and shape, and crystallinity of Gd2O3 nanoparticles by TEM, SEM, and XRD.  相似文献   

14.
In view of increasing commercial applications of metal oxide nanoparticles their toxicity assessment becomes important. Alumina (Al2O3) nanoparticles have wide range of applications in industrial as well as personal care products. In the absence of prior report on toxicological impact of alumina nanoparticles to microalgae, the principal objective of this study was to demonstrate the effect of the nanoparticles on microalgae isolated from aquatic environment (Scenedesmus sp. and Chlorella sp.). The growth inhibitory effect of alumina nanoparticles was observed for both the species (72 h EC50 value, 45.4 mg/L for Chlorella sp.; 39.35 mg/L for Scenedesmus sp.). Bulk alumina also showed toxicity though to a lesser extent (72 h EC50 value, 110.2 mg/L for Chlorella sp.; 100.4 mg/L for Scenedesmus sp.). A clear decrease in chlorophyll content was observed in the treated cells compared to the untreated ones, more effect being notable in the case of nanoparticles. Preliminary results based on FT-IR studies, optical and scanning electron microscopic images suggest interaction of the nanoparticles with the cell surface.  相似文献   

15.
Alumina micro- and nanopowders with the particle size from 200 μm to 40 nm synthesized by the sol-gel method are studied. The particle size dependence of γ-Al2O3→α-Al2O3 phase transformation is studied by differential thermal analysis, X-ray diffraction method, and transmission electron microscopy. X-ray diffraction data show that for alumina nanoparticles γ-Al2O3→θ-Al2O3 phase transformation occurs at 900°C, and for micro-particles it occurs in the temperature range 1150–1200°C. The alumina ceramics produced of alumina nanoparticles is shown to have higher flexural strength under three-point bending than the ceramics produced of micro-particles. The obtained results demonstrate that alumina particle size reduction stabilizes the formation of α-Al2O3 at lower temperatures, due to which the grain growth rate decreases and the flexural strength of monolithic oxide ceramics increases.  相似文献   

16.
The classical solid-phase reaction between Fe2O3 and Al layers in thin films is initiated. It is shown that, in the reaction products, Fe granulated films are formed in the Al2O3 nonconducting matrix. Analysis of the reaction equation demonstrates that the volume fraction of iron in the granulated films is less than the percolation threshold. This determines the magnetic properties of iron clusters in a superparamagnetic state. It is assumed that the nanocrystalline microstructure exists in thin films after solid-phase reactions proceeding under conditions of self-propagating high-temperature synthesis.  相似文献   

17.
There has been an increasing interest towards the incorporation of nanosize ceramic fillers in polymer electrolytes. Solid polymer electrolytes based on polyvinylidene fluoride (PVDF), silver triflate (AgCF3SO3), and x wt% of aluminum oxide (Al2O3) nanopowders (where x = 1, 3, 5, and 10, respectively) have been prepared using solution casting technique. The structural characteristics of these thin film specimens were studied using Fourier transform infrared (FTIR) and X-ray diffraction (XRD) patterns at room temperature. The appearance of new absorption bands and gradual shifts observed in some characteristic peaks confirmed the complex formation between polyvinylidene fluoride and silver triflate. Furthermore, the addition of nanosized filler Al2O3 has also indicated the interaction of the filler with the polymer salt complex. The XRD patterns obtained for all these samples in the 2θ range 10° to 70° showed the amorphous nature of these samples. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, December 7–9, 2006.  相似文献   

18.
Layered cobalt oxides Ca3Co4O9 thin films have been grown directly on c-cut sapphire substrates using pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations show that the deposited films present the expected monoclinic structure and a texture along the direction perpendicular to the Al2O3(001) plane. The Ca3Co4O9 structure presents six variants in the film plane. Rutherford backscattering spectroscopy shows that the films are stoichiometric and that the film thickness agrees with the nominal value. The susceptibility χ of the films, recorded along the c-axis of the substrate, after field cooling and zero field cooling in an applied field of 1 kOe shows two magnetic transitions at 19 and 370 K which agree well with previous findings on single crystal samples. In turn, at low temperature (5 K), the magnetization curve along the c-axis exhibits coercive field and remanent magnetization much smaller than those reported for bulk samples, which can be related to the influence of structural variants and structural defects.  相似文献   

19.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

20.
The dependence of the NMR frequencies on the external magnetic field in a Mn3Al2Ge3O12 non-collinear 12-sublattice antiferromgnet is calculated using the exchange approximation for the spin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号