首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Hsieh YL  Chen TH  Liu CY 《Electrophoresis》2006,27(21):4288-4294
A TiO2 nanoparticle (TiO2 NP)-coated open-tubular column for the capillary electrochromatographic separation of proteins is described. The surface chemistry of the TiO2 NPs on the inner wall of the fused silica was significantly affected by the running buffer. By varying of the phosphate buffer pH, only cathodic EOF was indicated. The results showed that TiO2 NPs are existed as a complexed form with the buffer ligand. Good separation of conalbumin (ConA), apo-transferrin (apoTf), ovalbumin (OVA), and BSA could be achieved with phosphate buffer (40 mM, pH 8.0) and an applied voltage of 15 kV. Five peaks of glycoisoforms of OVA were observed under these conditions. In comparison with the retention behavior of the analytes on the bare fused-silica column, the new column's high resolving power seems to be predominantly derived from the ligand exchange of the analytes with the phosphate adsorbed onto the TiO2 NPs. The method was also used to separate egg-white proteins. Both acidic and basic proteins in egg white were separated in a single run. The microheterogeneities of OVA could also be found in it. The separation efficiency for the main peak of OVA in egg white was around 10,000 plates/m.  相似文献   

2.
Continuous-bed columns containing sol-gel bonded 3 microm silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups (ODS/SCX) were prepared by first packing the ODS/SCX particles into a fused-silica capillary, then filling the packed capillary with a siliceous sol-gel, curing the sol-gel, and finally drying the column with supercritical carbon dioxide. The performance of the sol-gel bonded ODS/SCX columns was evaluated for capillary electrochromatography using acetonitrile aqueous mobile phase containing phosphate buffer. The columns were mechanically strong and permeable. Both EOF velocity and current increased linearly with elevation of the applied electric field strength. The EOF velocity was high at low pH and nearly constant over a range of pH 2-9. Higher buffer concentration resulted in higher current and lower EOF velocity. The acetonitrile content had no significant effect on the EOF. Without thermosetting the column, no bubble formation was noticed with currents up to 2.5 microA. The minimum plate height of a 25/34 cm x 75 microm I.D. sol-gel bonded 3 microm ODS/SCX column was 5.7 microm (1.75 x 10(5) plates per meter) at an optimum EOF velocity of 0.92 mm s(-1). Mixtures of test aromatic compounds and aromatic hydrocarbon homologues gave symmetrical peaks when using a low pH mobile phase. The retention and elution order of aromatic compounds represented a typical reversed-phase separation mechanism similar to conventional ODS columns. The run-to-run and column-to-column retention factor reproducibility was better than 2.5% and 8.0% RSD, respectively.  相似文献   

3.
Dong X  Dong J  Ou J  Zhu Y  Zou H 《Electrophoresis》2006,27(12):2518-2525
A polymer-based neutral monolithic capillary column was prepared by radical polymerization of glycidyl methacrylate and ethylene dimethacrylate in a 100 mum id fused-silica capillary, and the prepared monolithic column was subsequently modified based on a ring opening reaction of epoxide groups with 1 M lysine in solution (pH 8.0) at 75 degrees C for 10 h to produce a lysine chemically bonded stationary phases in capillary column. The ring opening reaction conditions were optimized so that the column could generate substantial EOF. Due to the zwitterionic functional groups of the lysine covalently bonded on the polymer monolithic rod, the prepared column can generate cathodic and anodic EOF by varying the pH values of running buffer during CEC separation. EOF reached the maximum of -2.0 x 10(-8) m2v(-1)s(-1) and 2.6 x 10(-8) m2v(-1)s(-1) with pH of the running buffer of 2.25 and 10, respectively. As a consequence, neutral compounds, ionic solutes such as phenols, aromatic acids, anilines, and basic pharmaceuticals were all successfully separated on the column by CEC. Hydrophobic interaction is responsible for separation of neutral analytes. In addition, the electrostatic and hydrophobic interaction and the electrophoretic migration play a significant role in separation of the ionic or ionizable analytes.  相似文献   

4.
Lee CH  Huang BY  Chen YC  Liu CP  Liu CY 《The Analyst》2011,136(7):1481-1487
A ZrO(2) nanoparticles (ZrO(2)NPs)-coated column was prepared through a sol-gel process using zirconium(iv) oxychloride, which reacted with silanol groups of the fused-silica capillary. The condensation reaction was carried out at 350 °C for 8 h. Electroosmotic flow (EOF) measurements and scanning electron microscopy (SEM) images were used to characterize the ZrO(2)NPs fabricated on the inner wall of the capillary. Below the pI value (pH 5-6), cathodic EOF elucidated that the phosphate buffer adsorbs tightly on the zirconia surface, resulting in a negatively charged surface. In this work, iron-binding proteins, phosphorylated proteins and glycoproteins were selected as the model compounds. The effects of pH, concentration, buffer type and the organic modifier were studied to optimize the separation efficiency. Iron-binding proteins exhibited a retention time for myoglobin (Mb) < hemoglobin (Hb), which corresponded to the binding constants for ZrO(2)NPs. The α- and β-subunit of Hb could be separated in borate buffer (20 mM, pH 9.0) with MeOH (20%, v/v). Greater affinity of α-casein and bovine serum albumin (BSA) for the stationary phase as the pH decreased was found by comparison with that of conalbumin (ConA) and transferrin (Tf). Interestingly, 14 peaks for glycoisoforms of ovalbumin (OVA) were observed using borate buffer (40 mM, pH 9.0). The established method was also applied to the determination of analytes in the egg whites of chicken and duck eggs.  相似文献   

5.
Zhou S  Tan J  Chen Q  Lin X  Lü H  Xie Z 《Journal of chromatography. A》2010,1217(52):8346-8351
A novel open tubular (OT) column covalently modified with hydrophilic polysaccharide, carboxymethylchitosan (CMC) as stationary phase has been developed, and employed for the separations of basic proteins and opium alkaloids by capillary electrochromatography (CEC). With the procedures including the silanization of 3-aminopropyltrimethoxysilane (APTS) and the combination of glutaraldehyde with amino-silylated silica surface and CMC, CMC was covalently bonded on the capillary inner wall and exhibited a remarkable tolerance and chemical stability against 0.1 mol/L HCl, 0.1 mol/L NaOH or some organic solvents. By varying the pH values of running buffer, a cathodic or anodic EOF could be gained in CMC modified column. With anodic EOF mode (pH<4.3), favorable separations of basic proteins (trypsin, ribonuclease A, lysozyme and cytochrome C) were successfully achieved with high column efficiencies ranging from 97,000 to 182,000 plates/m, and the undesired adsorptions of basic proteins on the inter-wall of capillary could be avoided. Good repeatability was gained with RSD of the migration time less than 1.3% for run-to-run (n=5) and less than 3.2% for day-to-day (n=3), RSD of peak area was less than 5.6% for run-to-run (n=5) and less than 8.8% for day-to-day (n=3). With cathodic EOF mode (pH>4.3), four opium alkaloids were also baseline separated in phosphate buffer (50 mmol/L, pH 6.0) with column efficiencies ranging from 92,000 to 132,000 plates/m. CMC-bonded OT capillary column might be used as an alternative medium for the further analysis of basic proteins and alkaline analytes.  相似文献   

6.
Lin CC  Liu CY 《Electrophoresis》2004,25(18-19):3216-3223
With 3-trimethoxysilylpropyl chloride as the spacer, a proline-coated capillary column was prepared for the capillary electrochromatographic (CEC) separation of amino acids by in-column derivatization. Nine standard mixtures, including aspartic acid, glutamic acid, valine, phenylalanine, alanine, isoleucine, leucine, tyrosine, and tryptophan, were injected. o-Phthalaldehyde (OPA), OPA/2-mercaptoethanol (2-ME) and OPA/N-acetylcysteine (NAC) in borate buffer were tested as the derivatizing agent. Among them, OPA (50 mM) in borate buffer (pH 9.5, 50 mM) gave the best performance. The formation of isoindole could be detected by UV detection. The sandwich-type injection was carried out in hydrostatic mode (10 cm) with the program R(10 s)S(10 s) R(10 s)W(10 min) with R, S, and W being the reagent, sample, and waiting times. Mesityl oxide, benzyl alcohol, and acetone showed some interaction with the column. A current monitoring method was used instead of the determination of the electroosmotic flow (EOF). The direction of EOF was from anode to cathode even under acidic condition lower than the pI value (6.31) of the bonded group due to some unreacted silanol groups. Some parameters including pH, nature, and concentration of the mobile phase and the effect of organic modifier with regard to the CEC separation were investigated. With the proline-coated column (75 (50) cm x 75 microm ID) the best separation was performed in phosphate buffer (pH 4.00, 100 mM) with an applied voltage of -15 kV. The established method was also compared with those precolumn derivatized prior to the separation with proline-coated column as well as with in-capillary derivatization and separation with a bare fused-silica column.  相似文献   

7.
Chen JL  Lu TL  Lin YC 《Electrophoresis》2010,31(19):3217-3226
A new phase containing immobilized carbon nanotubes (CNTs) was synthesized by in situ polymerization of acid-treated multi-walled CNTs using butylmethacrylate (BMA) as the monomer and ethylene dimethacrylate as the crosslinker on a silanized capillary, forming a porous-layered open-tubular column for CEC. Incorporation of CNT nanomaterials into a polymer matrix could increase the phase ratio and take advantage of the easy preparation of an OT-CEC column. The completed BMA-CNT column was characterized by SEM, ATR-IR, and EOF measurements, varying the pH and the added volume organic modifier. In the multi-walled CNTs structure, carboxylate groups were the major ionizable ligands on the phase surface exerting the EOF having electroosmotic mobility, 4.0 × 10(4) cm2 V(-1)1 S(-1)1, in the phosphate buffer at pH 2.8 and RSD values (n=5), 3.2, 4.1, and 4.3%, for three replicate capillaries at pH 7.6. Application of the BMA-CNT column in CEC separations of various samples, including nucleobases, nucleosides, flavonoids, and phenolic acids, proved satisfactory upon optimization of the running buffers. Their optima were found in the borate buffers at pH 9.0/50 mM, pH 9.5/10 mM/50% v/v ACN, and pH 9.5/30 mM/10% v/v methanol, respectively. The separations could also be used to assess the relative contributions of electrophoresis and chromatography to the CEC mechanism by calculating the corresponding velocity and retention factors. Discussions about interactions between the probe solutes and the bonded phase included the π-π interactions, electrostatic repulsion, and hydrogen bonding. Furthermore, a reversed-phase mode was discovered to be involved in the chromatographic retention.  相似文献   

8.
A multi‐functional separation column modified with 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane was developed for open tubular capillary electrochromatography. This functional hydrophilic triamine‐bonded open tubular column could generate both anodic and cathodic EOF. When the pH of the running buffer was below 5.3 (30% 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane, v/v), the anodic EOF was exhibited, which greatly prevented the undesired adsorptions of basic proteins on the capillary inner wall. Favorable separation of four basic proteins (viz. trypsin, ribonuclease A, lysozyme and cytochrome c) was successfully achieved at pH 3.5 of 10 mmol/L phosphate buffer. The column efficiencies of proteins were in the range from 87 000 to 110 000 plates/m, and the RSD values for migration time of four proteins were less than 1.2% (run‐to‐run, n=5). The ionic analytes were also separated efficiently in the co‐electroosmotic mode. The average efficiencies ranged from 81 000 to 190 000 plates/m for seven aromatic acids and 186 000–245 000 plates/m for four nucleoside monophosphates, respectively, and good capillary column repeatability was gained with RSD of the migration time not more than 3.0%. The triamine‐bonded open tubular capillary column is favorable to be an alternative functional medium for the further analysis of basic proteins and anionic analytes.  相似文献   

9.
毛细管电泳中影响径向电场控制电渗的主要因素   总被引:3,自引:0,他引:3  
朱英  陈义 《色谱》1999,17(6):525-528
利用自制的二维电场毛细管电泳系统研究了不同因素对径向电场控制电渗能力的影响,发现缓冲液的pH值、浓度、种类以及管壁表面状态、管径等对电渗的电场调控有关键性的影响。有趣的是,添加剂不影响电场的调控能力,而杯芳烃涂层毛细管却能提高电渗对径向电场的响应能力。利用这种涂层效应有可能实现较高pH值下电渗的电场调控。  相似文献   

10.
Xu L  Sun Y 《Journal of chromatography. A》2008,1183(1-2):129-134
The use of a phenylalanine (Phe) functionalized tentacle-type polymer coated capillary column for protein separation by open tubular capillary electrochromatography (OTCEC) was demonstrated in this work. The tentacle-type stationary phase was prepared from silanized fused-silica capillaries of 50 microm I.D. by glycidyl methacrylate graft polymerization and subsequent Phe functionalization. Due to the amphoteric functional groups of the Phe bonded on the tentacle-type polymer stationary phase, protein separation in the prepared column can be performed under both cathodic and anodic electroosmotic flow (EOF) by varying the pH values of the mobile phase. Model proteins including ribonuclease A (RNase A), myoglobin, transferrin, insulin were baseline separated under cathodic EOF with a mobile phase of pH 8.8. Comparison between the separation result of the four proteins under conditions of OTCEC and capillary zone electrophoresis indicates that the migration behavior of the four proteins in the prepared column was the result of the interplay of chromatographic retention and electrophoretic migration. Besides, three basic proteins including RNase A, cytochrome c (Cyt-c) and lysozyme (Lys) were fully resolved under anodic EOF with an acidic running buffer (pH 2.5). The elution order was the same as the isoelectric point values of the proteins (RNase A相似文献   

11.
A fused-silica capillary that is wall-modified via chemically bonding a sulfonated polymer to the capillary wall has a uniform negative charge density on its surface and produces an electroosmotic flow (EOF) greater than 4 x 10(-4) cm2 V(-1) s(-1) The EOF is nearly independent of buffer pH over the pH range of 2 to 10 and is lower than the EOF obtained for the bare fused-silica capillary at the more basic pH but is higher at the more acidic buffer pH. Optimization of buffer pH can be based on analyte pKa values to improve the overall quality of the capillary zone electrophoresis (CZE) separation of complex mixtures of weak acid and base analytes. Because of the high EOF in an acidic buffer, the capillary is useful for the separation of weak organic bases which are in their cation forms in the acidic buffer. EOF for the sulfonic acid bonded phase capillary can be adjusted via buffer additives such as organic solvent, tetraalkylammonium salts, multivalent cations and alkylsulfonic acids. The advantages of utilizing buffer pH and the EOF buffer modifiers to enhance migration time, selectivity, and resolution in CZE separations with this capillary are illustrated using a series of test analyte mixtures of inorganic anions, carboxylic acids, alkylsulfonic acids, benzenesulfonic acids, sulfas, pyridines, anilines or small-chain peptides.  相似文献   

12.
An analytical approach of the 32-membered macrocyclic polyamine, 1,5,9,13,17,21,25,29-octaazacyclodotriacontane ([32]ane-N8) was described for the capillary electrochromatographic (CEC) separation of derivatized mono- and disaccharides. The column displayed reversal electroosmotic flow (EOF) at pH below 7.0, while a cathodic EOF was shown at pH above 7.0. The reductive amination of saccharides was carried out with p-aminobenzoic acid. Some parameters that affect the CEC separations were investigated. Several competitive ligands, such as Tris, EDTA and phosphate were also examined for the effect on the performance. We achieved a complete separation of all compounds as well as the excess derivatizing agent by using borate buffer (pH 9.0) in a mode of concentration gradient (60 mM inlet side and 70 mM outlet side). The relative standard deviation of the retention time measured for each sample was less than 4% in six continuous runs, suggesting that the bonded phase along with the gradient formed inside the column was quite stable. With the mixing modes of anion coordination, anion exchange, and shape discrimination, the interaction adequately accomplishes the separation of carbohydrates which are epimers or have different glycosidic linkage, although the electrophoretic migration is also involved in the separation mechanism.  相似文献   

13.
Characterization of SU-8 for electrokinetic microfluidic applications   总被引:1,自引:0,他引:1  
The characterization of SU-8 microchannels for electrokinetic microfluidic applications is reported. The electroosmotic (EO) mobility in SU-8 microchannels was determined with respect to pH and ionic strength by the current monitoring method. Extensive electroosmotic flow (EOF), equal to that for glass microchannels, was observed at pH > or =4. The highest EO mobility was detected at pH > or =7 and was of the order of 5.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer. At pH < or =3 the electroosmotic flow was shown to reverse towards the anode and to reach a magnitude of 1.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer (pH 2). Also the zeta-potential on the SU-8 surface was determined, employing lithographically defined SU-8 microparticles for which a similar pH dependence was observed. SU-8 microchannels were shown to perform repeateably from day to day and no aging effects were observed in long-term use.  相似文献   

14.
The migration characteristics of small polar molecules are evaluated on etched, chemically modified capillaries with four different moieties (C5, C18, diol and cholesterol) bonded onto a silica hydride surface. The effects of pH on migration are used to determine the possible contributions of eletrophoretic mobility, electroosmotic flow (EOF) and analyte/bonded phase interactions. The EOF on etched capillaries is more complicated than on ordinary fused capillaries because it changes from anodic to cathodic as the pH is raised. A mixture of neurotransmitters and related compounds is used to further evaluate the effects of the bonded moiety on the separation properties of this particular electrophoretic format.  相似文献   

15.
A 28-membered macrocyclic polyamine, 4,8,12,18,22,26-hexaaza-1,15-dioxacyclooctaeicosane ([28]ane-N6O2) with two dipropylenetriamine moieties bound together by diethylether unit was able to form polyprotonated, highly charged species in a wide pH region. It was covalently bonded on the inner surface of the fused silica capillary. The capillary showed reversed electroosmotic flow (EOF), allowing anions to be separated in the co-EOF mode. With the phosphate buffer (30 mM) and an applied voltage of –15 kV, the influence of buffer pH and temperature on the interaction between nucleotides and the bonded phase were investigated. The results indicated that a coordination reaction occurs between the analytes and the bonded phase, and this is followed by cleavage of the terminal phosphate. As a result we found three peaks for each nucleoside triphosphate and two peaks for the diphosphates after samples were injected at 35 °C, while only two peaks for the triphosphates and no splitting for the diphosphates at 20 °C were indicated. In other words, a significant effect of temperature on the hydrolysis was observed, and the bonded phase showed a preference for the binding of nucleoside triphosphate over nucleoside diphosphate.  相似文献   

16.
O Zerbinati  F Trotta 《Electrophoresis》2001,22(16):3578-3582
Native beta- and gamma-cyclodextrin (CD), neutral beta-CD derivatives and ethylcarbonate derivatives of beta- and gamma-CD were used as stereoselective additives for CD-capillary zone electrophoresis (CZE) resolution of atropisomers of 1,1'-bi-(2-naphthol) (BN). CZE experiments at variable CD concentration allowed calculating binding constants from electrophoretic mobility data, corrected for electroosmotic flow (EOF) and running buffer viscosity variations. The CDs were chosen on the basis of geometric examination of molecular models of BN and CDs that suggested the possibility of inclusion complexes formation. Optimum concentrations, with aqueous 25 mM phosphate running buffer at pH 10.5, 36 cm x 50 microm capillary and 10 kV applied potential, were 3.6, 3.9, 2.1, 2.2, 1.9 mM for beta-CD, gamma-CD, ethylcarbonate-beta-CD, methyl-beta-CD and hydroxypropyl-beta-CD, respectively.  相似文献   

17.
Lin SY  Chen WH  Liu CY 《Electrophoresis》2002,23(9):1230-1238
An open-tubular wall-coated macrocyclic polyamine capillary column (70 cm x 75 microm ID) with 50 cm effective length for the separation of nucleoside monophosphates is described. Some parameters with respect to concentration, pH, composition of the buffer, and voltage in order to optimize the separation were studied. The coated capillary showed reversed electroosmotic flow (EOF), allowing anions to be separated in the co-EOF mode. Baseline separations were achieved for the eight nucleotides in less than 26 min using a background electrolyte consisting of H(3)PO(4)-NaH(2)PO(4) (30 mM, pH 3.10), an applied voltage of -15 kV, and detection at 254 nm. The macrocyclic polyamine on the capillary wall introduced anion coordination for the interaction with the analytes, the strength of which could be moderated by the type and concentration of the competing ion used in the background electrolyte (BGE). With a low concentration of the competing ion (phosphate ion), the migration behavior followed that obtained in the electrophoretic system. Increasing the concentration of the competing ion resulted in a faster migration and more complete elution of the analyte. The method established was also employed for the analysis of nucleotides in mushrooms. Aqueous extracts of mushrooms from different species and various extraction methods were injected directly for the analysis. Uridine 5'-monophosphate, guanosine 5'-monophosphate, adenosine 5'-monophosphate, and cytidine 5'-monophosphate, were found in the sample tested.  相似文献   

18.
Lin B  Shi ZG  Zhang HJ  Ng SC  Feng YQ 《Electrophoresis》2006,27(15):3057-3065
Perphenylcarbamoylated beta-cyclodextrin bonded-silica particles (5 microm) were packed into 75-mum fused-silica capillaries, and used for the enantiomer separation of neutral and basic solutes by pressure-assisted capillary electrochromatography. Triethylammonium acetate and phosphate buffer were employed as the BGEs. A cathodic EOF was observed with these two BGEs. Seven chiral analytes were successfully resolved into their enantiomers under optimized conditions, and five of them could be baseline-separated within 12 min due to their high electrophoretic mobility. Better results were achieved with phosphate buffer as the BGE. The effects of organic content and pH on the enantioseparation were also investigated.  相似文献   

19.
Lin SY  Liu CY 《Electrophoresis》2003,24(17):2973-2982
The electrochromatographic separations of 2'-, 3'- and 5'-monophosphates of adenosine, guanosine, cytidine, and uridine were carried out with an open-tubular capillary column which was wall-coated with a highly selective reagent, 28-membered macrocyclic polyamine, 4, 8, 12, 18, 22, 26-hexaaza-1,15-dioxacyclooctaeicosane ([28]ane-N6O2). The effects of pH, composition and concentration of background electrolyte (BGE), applied voltage, column length, and the additive of the BGE, such as metal ions, borate, beta-cyclodextrin and organic solvent on the separation of these monophosphorylated nucleotide isomers were investigated. The results suggested that the interactions between analytes and the bonded groups on the wall predominantly comprise anion coordination and anion exchange in addition to the electrophoresis. A well-resolved electrochromatogram was obtained with the capillary column of 100 cm (75 cm effective length) x 75 microm inside diameter (ID), citrate buffer (20 mM, pH 3.99), applied voltage of -22 kV and detection at 254 nm. Column efficiency was found with the average theoretical plate numbers of 119,500/m and a low detection limit of 0.01 microM level could be achieved for the separation of these isomers.  相似文献   

20.
周建忠  廖杰  钱小红  董芳霆 《色谱》1997,15(2):159-160
建立了用毛细管胶束电动色谱法(MEKC)分离19种PTH氨基酸的方法,并探讨了电压、pH值、温度、胶束浓度对氨基酸迁移时间的影响。方法具有速度快、灵敏度高、样品用量少的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号