首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The product ion spectrum allows us to achieve very selective detection of pesticides and to eliminate the ambiguities caused by more conventional analytical approaches. Owing to the enhanced capabilities of GC/MS/MS for multiresidue pesticides, the development of a GC/MS/MS pesticides library will be useful. The aim of this study was to develop a sensitive and specific analytical method for the identification and quantification of compounds without the need of a time-consuming procedure. Two methods were studied in order to optimize the nonresonant conditions of dissociation of five pesticides (deltamethrin, metalaxyl, myclobutanil, procymidone, pirimicarb). The first permits a systematic investigation of the influence of the qz trapping parameter on sensitivity in precursor ion detection and on the efficiency of collision-induced dissociation (CID). The second is more suited for analytical laboratories and less time-consuming and allows us to reach similar results: the experiments were conducted step by step at a constant stability parameter.  相似文献   

2.
A method for simultaneous analysis of about 260 pesticides by gas chromatography coupled to tandem mass spectrometry (GC/MS/MS) with a triple quadrupole analyzer (QqQ) has been studied. The pesticides were extracted with acetonitrile and cleaned up by a bilayer cartridge. A single injection method was developed for the monitoring of all of the targeted pesticides. Two MS/MS transitions were selected for each analyte using the intensity ratio obtained from them as a confirmatory parameter. By using matrix-matched standards, 260 pesticides could be determined in most matrixes with recoveries of 70-120% and a standard deviation of < or = 20 at 2 different fortification levels of 0.02 and 0.1 microg/g. The developed method was applied to the monitoring of 173 agricultural product samples from the local market. The sensitivities of this method were lower than with most of the selective GC detectors, such as flame photometric or single MS. The selectivity of QqQ gives a very clean chromatogram, making compound identification and confirmation easy. The quick and reliable monitoring was achieved by combination with rapid extraction and cleanup.  相似文献   

3.
An approach is described for optimizing chromatographic conditions for dual-column analysis of U.S. EPA Method 608 pesticides. Sample throughput for environmental analysis of pesticides can be increased by performing the screening and confirmation analyses at the same time. This requires simultaneous injection, separation, and detection in a GC with dual inlets, columns, and detectors. Resolution maps for flow rate and temperature relationships of poorly resolved peak pairs for 5%-phenyl methyl silicone and 7%-cyanopropyl 7%-phenyl methyl silicone capillary columns are presented. Resolution of target pesticides on the 5%-phenyl methyl silicone column was much more sensitive to changes in flow and temperature-ramp rates than was the 7%-cyanopropyl 7%-phenyl methyl silicone column. Optimal conditions resulted in a run time of approximately 20 min.  相似文献   

4.
An efficient and sensitive method has been established for simultaneous determination of 653 pesticides in teas by GC/MS and HPLC/MS/MS. The method involved extraction with acetonitrile followed by cleanup using Cleanert-TPT SPE and subsequent identification and quantitation of 490 pesticides by GC/MS and 448 pesticides by HPLC/MS/ MS. The LODs for pesticides determined by GC/MS were between 1.0 and 500 microg/kg, and those determined by HPLC/MS/MS were between 0.03 and 4820 microg/kg. At the low fortification levels of 0.01-100 microg/kg, the average recoveries of 94% of the pesticides determined by GC/MS were between 60 and 120%, 77% of which had an RSD below 20%. For 91% of pesticides determined by HPLC/MS/MS, the average recoveries were between 60 and 120%, 76% of which had an RSD below 20%. The paper also reports a novel SPE column, Cleanert TPT, which comprised graphitized carbon black (PestiCarb), polyamine silica, and amide polystyrene for purifying the tea samples. The results indicated good repeatiblity and reproducibility.  相似文献   

5.
A multiresidue method was developed for the determination of nitrogen- and phosphorous-containing pesticides (amines, anilides, phosphorothioates, and triazines) by solid-phase microextraction (SPME) in-line coupled to gas chromatography—mass spectrometry (GC/MS). The 85-µm polyacrylate fiber was first dipped into the aqueous sample for a given time and then directly introduced into the heated injector of the gas chromatography—mass spectrometer, where the analytes are thermally desorbed. The method was evaluated with respect to the limit of detection, linearity, and precision. The limit of detection [selected ion monitoring (SIM) mode] depends on the compound and varies from 5 to 90 ng/L. The method is linear over at least 3 orders of magnitude with coefficients of correlation usually ≥0.996. In general, the coefficient of variation (precision) is <10%. The partitioning of the analyte between the aqueous phase and the polymeric phase depends on the hydrophobicity of the compound as expressed by the octanol—water partitioning coefficient P ow. The addition of sodium chloride has a strong effect on the extraction efficiency. This effect increases with decreasing hydrophobicity (increasing polarity) of the compound. The triazines atrazine, simazine, and terbuthylazine were first identified and quantified in water samples from the effluent of sewage plants by SPME-gas chromatography—nitrogen—phosphorus detection (GC/NPD). For such a complex matrix GC/NPD is not sufficiently selective for an unambiguous identification at low levels (<1 ppb) of pesticides. Selectivity may be enhanced by using SMPE-GC/MS in the SIM mode with three characteristic ions for each pesticide. This method allows an unequivocal identification and quantification at low levels of pesticides in environmental samples. At a target limit of detection below 100 ng/L, SPME-GC/MS represents a very simple, fast, selective, and solvent-free multimethod for the extraction and determination of these nitrogen- and phosphorous-containing pesticides from aqueous samples.  相似文献   

6.
The use of gas chromatography/tandem mass spectrometry (GC/MS/MS) applied to determine multiple pesticide residues in fresh vegetables has been thoroughly studied. A single injection method to detect, confirm and quantify 54 multiclass pesticides has been developed and applied in a routine analysis laboratory. The proposed method consists of a rapid extraction of 15 g of vegetable sample with dichloromethane. An additional clean-up step is not necessary even when injecting 10 microL of extract. Instead the gas chromatograph was fitted with a carbofrit inserted into the glass liner and a guard column. In addition, the detection mode chosen (MS/MS) provides additional selectivity. The method has been validated and applied to 1300 samples in a routine laboratory following specified quality criteria. The recovery efficiencies obtained for all the pesticides ranged between 70.2 and 110.8% at two different fortification levels. The relative standard deviation for quantification (RSD) was lower than 16.7% for all the compounds. Important experimental parameters, such as the conditioning of carbofrit, overload of the analytical column, and cleanliness of the ion trap, were evaluated for their influence on the performance of the method.  相似文献   

7.
Two on-line SPE-LC-ESI-MS/MS methods have been developed for the rapid determination and confirmation of 18 polar pesticides and nine transformation products (TPs) in water samples. Given the very different physico-chemical characteristics of the analytes, it was not feasible the simultaneous determination of all selected compounds in only one method. Thus, it was necessary to use heptafluorobutyric acid and formic acid in order to obtain good retention in the SPE cartridge for basic and acidic analytes, respectively. The developed analytical methodology based on the direct injection of 2 mL of water sample in the system allowed the quantification of all analytes at the 25 ng/L level (LOQ) with limits of detection normally lower than 5 ng/L. Satisfactory recoveries (70-110%) were obtained for most compounds in ground and surface water samples. Some exceptions were found mainly in surface water, due to the ion suppression produced by the higher amount of matrix interferents in these samples. The acquisition of two MS/MS transitions for each compound allowed the reliable confirmation of positive findings even at the LOQ level. The developed methodology was applied to real ground and surface water samples showing the interest of including TPs in monitoring methods, as several of them were found at concentrations higher than that of parent compounds.  相似文献   

8.
Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.  相似文献   

9.
A rapid multiresidue method for the analysis of 72 pesticides has been developed using a single injection with low-pressure gas chromatography/tandem mass spectrometry (LP-GC/MS/MS). The LP-GC/MS/MS method used a short capillary column of 10 m x 0.53 mm i.d. x 0.25 microm film thickness coupled with a 0.6 m x 0.10 mm i.d. restriction at the inlet end. Optimal LP-GC conditions were determined which achieved the fastest separation in MS/MS detection mode. Also MS/MS conditions were optimized in order to increase sensitivity and selectivity. The analytical parameters of the LP-GC/MS/MS method were compared with those obtained by GC/MS/MS using a conventional capillary column (30 m x 0.25 mm i.d. x 0.25 microm film thickness). Better precision and sensitivity values were obtained with the LP-GC/MS/MS approach. The limits of detection (LOD) of the compounds ranged from 0.1 to 14.1 microg L(-1) for LP-GC/MS/MS, lower than those obtained for conventional GC/MS/MS that ranged from 0.1 to 17.5 microg L(-1). The peak widths obtained with the short column in LP-GC are similar to those obtained using conventional capillary GC columns, and the peaks can be successfully identified by MS/MS detection with the conventional scan speed of ion-trap instruments. In addition, the analysis time was significantly reduced with LP-GC/MS/MS (32 min) versus GC/MS/MS (72 min), allowing the number of samples analyzed per day in a routine laboratory to be doubled.  相似文献   

10.
A fast method of analysis for 20 representative pesticides was developed using low-pressure gas chromatography-mass spectrometry (LP-GC-MS). No special techniques for injection or detection with a common quadrupole GC-MS instrument were required to use this approach. The LP-GC-MS approach used an analytical column of 10 m x 0.53 mm I.D., 1 microm film thickness coupled with a 3 m x 0.15 mm I.D. restriction capillary at the inlet end. Thus, the conditions at the injector were similar to conventional GC methods, but sub-atmospheric pressure conditions occurred throughout the analytical column (MS provided the vacuum source). Optimal LP-GC-MS conditions were determined which achieved the fastest separation with the highest signal/noise ratio in MS detection (selected ion monitoring mode). Due to faster flow-rate, thicker film, and low pressure in the analytical column, this distinctive approach provided several benefits in the analysis of the representative pesticides versus a conventional GC-MS method, which included: (i) threefold gain in the speed of chromatographic analysis; (ii) substantially increased injection volume capacity in toluene; (iii) heightened peaks with 2 s peak widths for normal MS operation; (iv) reduced thermal degradation of thermally labile analytes, such as carbamates; and (v) due to larger sample loadability lower detection limits for compounds not limited by matrix interferences. The optimized LP-GC-MS conditions were evaluated in ruggedness testing experiments involving repetitive analyses of the 20 diverse pesticides fortified in a representative food extract (carrot), and the results were compared with the conventional GC-MS approach. The matrix interferences for the quantitation ions were worse for a few pesticides (acephate, methiocarb, dimethoate, and thiabendazole) in LP-GC-MS, but similar or better results were achieved for the 16 other analytes, and sample throughput was more than doubled with the approach.  相似文献   

11.
In recent years, comprehensive two-dimensional gas chromatography (GC x GC) has attained increasing attention for its outstanding separation potential and capability to solve demanding analytical tasks. Trace level analysis of pesticides residues in complex food matrices represents such a demanding task. For some commodities, such as baby food, the requirements on method detection limits are very strict and the unambiguous confirmation of the pesticide presence based on mass spectrometric detection is required. In this work, GC x GC coupled to time-of-flight mass spectrometry (TOF MS) has been evaluated for the determination of pesticides residues in fruit samples. Twenty modern pesticides with a broad range of physico-chemical properties were analysed in apple and peach samples. It has been demonstrated that the application of comprehensive two-dimensional gas chromatography brings distinct advantages such as enhanced separation of target pesticides from matrix co-extracts as well as their improved detectability. The limits of detection of the pesticides comprised in the study (determined at S/N = 5) ranged from 0.2 to 30 pg, injected with the exception of the last eluted deltamethrin, for which 100 pg could be detected. When compared to one-dimentional GC-TOF MS analysis under essentially the same conditions the detectability enhancement was 1.5-50-fold. Full mass spectral information by time-of-flight mass spectrometry and the deconvolution capability of the dedicated software allowed for reliable identification of most pesticides at levels below 0.01 mg/kg (< 10 pg injected) in fruit. Performance characteristics of the GC x GC-TOF MS method, such as linearity of calibration curves, repeatability of (summed) peak areas, as well as repeatability of first and second dimension retention times, were shown to fully satisfy the requirements for trace level analysis of the pesticide residues in food.  相似文献   

12.
An analytical method for screening, quantitation and confirmation of a group of 100 pesticides in vegetable and fruit samples was developed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The pesticides studied belonged to different chemical families of herbicides, insecticides and fungicides; some degradation products were included as well. A thorough optimization was performed for each analyte to achieve individual optimum fragmentor and collision energy voltages. Two transitions per parent compound were monitored in a single chromatographic run containing two time segments. A small particle size C(18) column (1.8 microm) was used for the chromatographic separation of the mixture, providing very narrow peaks and allowing an excellent separation of all the analytes in a 30-min period for maximum peak capacity. The method was validated with blank matrices of green pepper, tomato and orange spiked from 0.1 to 100 microg/kg with the pesticide mix. Quantitation was carried out using matrix-matched standard calibration and linearity of response over 3 orders of magnitude was demonstrated (r > 0.99). Limits of detection based on two transitions and ion-ratio requirements ranged between 0.3 and 50 microg/kg. In general, the sensitivity obtained meets the maximum residue levels (MRLs) established by the European Union regulation for food monitoring programs. The analytical performance of the method was evaluated for different types of vegetables and fruits, showing little or no matrix effects, and examples of screening and confirmation of pesticides in these samples are shown here.  相似文献   

13.
Two nitrogen-specific detection methods, nitrogen-phosphorus detection (NPD) and nitrogen chemiluminescence detection (NCD), were investigated as low cost alternatives to mass spectrometry (MS) with chemical ionization (CI) for analysis of nitrosamines in aqueous samples. NCD showed greater sensitivity to N-nitrosodimethylamine (NDMA) and seven other volatile nitrosamines than did NPD. Instrument detection levels for NDMA were established at 2.6 microg/L and 4.0 microg/L in solvent with 3 microL splitless gas chromatograph (GC) injection for NCD and NPD, respectively. Using a dual-column confirmation method, both NCD and NPD compared favorably with CI-MS results for NDMA analysis in a variety of water sample types. For seven other nitrosamines, both detectors showed excellent accuracy in analyzing high concentrations (greater than 300 ng/L) in complex wastewater matrices, while the accuracy of spike recoveries of very low levels (less than 15 ng/L) in clean matrices varied for each nitrosamine and detection method.  相似文献   

14.
Anabolic and androgenic steroids (AASs) are synthetic substances related to the primary male sex hormone, testosterone. AASs can be abused in both human and equine sports and, thus, are banned by the International Olympic Committee and the Association of Racing Commissioners International (ARCI). Enforcement of the ban on the use of AASs in racehorses during competition requires a defensible and robust method of analysis. To address this requirement, a high‐throughput ultra high‐performance liquid chromatography–mass spectrometric (UHPLC–MS) method was developed for the detection, quantification and confirmation of 55 AASs in equine plasma. AASs were recovered from equine plasma samples by liquid–liquid extraction with methyl tert‐butyl ether (MTBE). Analytes were chromatographically separated on a sub‐2 µm particle size C18 column with a mobile phase gradient elution and detected by selected‐reaction monitoring (SRM) on a triple quadrupole mass spectrometer. AASs with isobaric precursor ions were either chromatographically resolved or mass spectrometrically differentiated by unique precursor‐to‐product ion transitions. A few of them that could not be resolved by both approaches were differentiated by intensity ratios of three major product ions. All the epimer pairs, testosterone and epitestosterone, boldenone and epiboldenone, nandrolone and epinandrolone, were chromatographically base‐line separated. The limit of detection and that of quantification was 50 pg/ml for most of the AASs, and the limit of confirmation was 100–500 pg/ml. Full product ion spectra of AASs at concentrations as low as 100–500 pg/ml in equine plasma were obtained using the triple quadrupole instrument, to provide complementary evidentiary data for confirmation. The method is sensitive and selective for the detection, quantification and confirmation of multiple AASs in a single analysis and will be useful in the fight against doping of racehorses with AASs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Dual detection has already been used to analyse organic contaminants in several matrices and the potential use of this technique for compound identification using the detector-response ratio (DRR) for two detectors has been reported. In this study DRR was redefined in terms of analyte concentration. The ratio was applied to compounds with both positive and negative responses fitting linear or logarithmic calibration plots. Use of DRR has been evaluated for pesticides of several chemical classes (organochlorine, organophosphorus, triazine, and thiocarbamate) and for an organophosphate ester, in aqueous matrices, using electron-capture and nitrogen–phosphorus detection. A limit of confirmation (LOC) was defined as the minimum concentration required for identification of a compound by use of the DRR. The identification results obtained were confirmed by GC–MS.  相似文献   

16.
Systematic toxicological analysis (STA) is aimed at detecting and identifying all substances of toxicological relevance (i.e. drugs, drugs of abuse, poisons and/or their metabolites) in biological material. Particularly, gas chromatography–mass spectrometry (GC/MS) represents a competent and commonly applied screening and confirmation tool. Herein, we present an untargeted liquid chromatography–tandem mass spectrometry (LC/MS/MS) assay aimed to complement existing GC/MS screening for the detection and identification of drugs in blood, plasma and urine samples. Solid-phase extraction was accomplished on mixed-mode cartridges. LC was based on gradient elution in a miniaturized C18 column. High resolution electrospray ionization-MS/MS in positive ion mode with data-dependent acquisition control was used to generate tandem mass spectral information that enabled compound identification via automated library search in the “Wiley Registry of Tandem Mass Spectral Data, MSforID”. Fitness of the developed LC/MS/MS method for application in STA in terms of selectivity, detection capability and reliability of identification (sensitivity/specificity) was demonstrated with blank samples, certified reference materials, proficiency test samples, and authentic casework samples.  相似文献   

17.
A multi-residue liquid chromatography/tandem mass spectrometry method (LC/MS2) was developed for the detection of the non-steroidal anti-inflammatory drugs acetylsalicylic acid (via the marker residue salicylic acid), flunixin, phenylbutazone, tolfenamic acid, meloxicam and ketoprofen, in bovine muscle. After extraction of the bovine muscle with acetonitrile, the cleanup was performed using a Oasis HLB column. The evaporated eluate was reconstituted and analysed by LC/MS2. To obtain optimal detection of salicylic acid and phenylbutazone, the ion trap mass spectrometric parameters activation q and maximum ion injection time, respectively, were optimised. The activation q for salicylic acid was increased to obtain reliable detection of both salicylic acid and its product ion. The maximum ion injection time for the time segment containing phenylbutazone was decreased since there were not enough scans across the chromatographic peak of this compound. The multi-residue method was able to detect the different analytes below or at the maximum residue limit (MRL) or minimum required performance limit (MRPL) or, in the case of phenylbutazone and ketoprofen, at 100 and 20 microg kg(-1), respectively.  相似文献   

18.
Use of a temperature-programmable preseparation column in the gas chromatographic (GC) injection port permits determination of a wide range of semi-volatile pesticides including organochlorines, organophosphates, triazines, and anilines in fatty composite dietary samples while reducing sample preparation time and solvent consumption. Dietary samples are mixed with diatomaceous earth and are Soxhlet-extracted with an azeotropic solution of hexane and acetone. Sample preparation uses liquid-liquid partitioning over diatomaceous earth followed by normal phase chromatography over partially deactivated alumina. The final cleanup step occurs in a preseparation column in the GC injector, which is able to perform splitless transfer of the analytes to the analytical column and purge 99% of the high molecular weight residue. Detection is performed by GC/mass spectrometry (MS) in the selected ion monitoring mode. Method detection limits were at or below 2 ng/g for 24 of 35 pesticides studied, with recovery between 70 and 125% for 27 pesticides in samples fortified at 10 ng/g. Recovery was not dependent on fat content when measured in laboratory fortified samples containing 1, 5, and 10% fat by weight. Precision over multiple injections was acceptable, with a relative standard deviation of 2.6-15% for 25 analytes.  相似文献   

19.
A method for the rapid trace analysis of 17 residual pesticides in water by narrow-bore capillary (I.D. 100 microm) gas chromatography-mass spectrometry (GC-MS) using a programmable temperature vaporizer (PTV) was discussed. The method consisted of a large-volume injection (40 microl) by a PTV, high-speed analysis using a narrow-bore capillary column and MS detection. The PTV with solvent vent mode was very useful for large-volume injection into a narrow-bore capillary column because the injected solvent volume could be reduced to less than 2 microl. The analysis time was 8.5 min [less than 50% of the analysis time using conventional columns (I.D. 250 microm)]. A 10-ml volume of river water was extracted by dichloromethane (4 ml), and then the extract was condensed to 1 ml. This extract was analyzed. Mean recoveries for river water spiked at 100 pg/ml ranged from 83.4 to 96.7%. The limit of detections of the 17 pesticides ranged from 1 to 100 pg/ml.  相似文献   

20.
A multi-residue method is described for the simultaneous analysis of 109 pesticides with different properties in unpolished rice. The range covers organophosphorus, organochlorine, carbamate, and synthetic pyrethroid pesticides. The pesticides were extracted from the sample using ethyl acetate. Most higher molecular weight components such as lipids in the co-extractives were removed by gel permeation chromatography (GPC) with a Bio-bead SX-3 column. A Florisil column with ethyl acetate/hexane as the eluting solvents was used for further cleanup. The pesticides were finally simultaneously determined by gas chromatography/mass spectrometry (GC/MS) in selective ion monitoring (SIM) mode. The average recoveries for most pesticides (spiked level 0.02, 0.1 and 1 microg/g) ranged from 70% to 110%, the relative standard deviation (RSD) was below 20% in every case, and the limit of detection (LOD) varied from 1 to 20 ng/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号