首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
5-aminolevulanic acid (ALA), a precursor of Protoporphyrin IX, was evaluated as an inducer of photodamage on Hep2c, human larynx squamous cell carcinoma, cell line. Porphyrins are used as active cytotoxic antitumor agents in photodynamic therapy (PDT). The present study evaluates the effects of photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) using human larynx cells as experimental model. Hep2c cell line was irradiated with red light (a diode laser, λ = 635 nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of Hep2c cells were studied. The optimal uptake of photosensitizer ALA in Hep-2c cells was investigated by means of spectrometric measurement. Cells viability was determined by means of neutral red assay (NR). It was observed that sensitizer or light doses have no significant effect on cells viability when studied independently. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 7 h in vitro incubation. The photocytotoxic assay showed that light dose of 85 J/cm2 gives effective PDT outcome for Hep2c cell line incubated with 55 μg/ml of 5-ALA with a conclusion that Hep2c cell line is sensitive to ALA-mediated PDT.  相似文献   

2.
Photodynamic therapy (PDT) is a kind of photochemo therapeutic treatment that exerts its effect mainly through the induction of cell death. Distinct types of cell death may be elicited by different PDT regimes. In this study, efforts are underway to optimize PDT protocols for improved efficacy and combination of all three PDT mechanisms involved in the different human carcinomas cell narcosis. Our in vitro cell culture experiments with 5-aminolevulanic acid (ALA) a clinically approved photiosensitizer (PS) and 635 nm laser light have yielded promising results, as follow: (1) (human cervical cancer (HeLa) cell line incubated, for 18 h, with 30 μg/ml of 5-ALA, treated with laser light dose of 50 J/cm2 can produce 85% of cell killing (2) human larynx carcinoma (Hep2c) cell line incubated, for 7 h, with 55 μg/ml of 5-ALA, treated with laser light dose of 85 J/cm2 can produce 75% of cell killing (3) human liver cancer (HepG2) cell line incubated, for 22–48 h, with 262 μg/ml of 5-ALA, treated with laser light dose of 120 J/cm2 can produce 95% of cell killing (4) human muscle cancer (RD) cell line incubated, for 47 h, with 250 μg/ml of 5-ALA, treated with laser light dose of 80 J/cm2 can produce 76% of cell killing (5) Human embryonic kidney (HEK293T) cell line incu-bated, for 18 h, with 400 μg/ml of 5-ALA, treated with laser light dose of 40 J/cm2 can produce 82% of cell killing confirming the efficacy of photodynamic therapy.  相似文献   

3.
In the current study, the cytotoxic effects induced by the given photosensitizer (PS) on human rhybdomyosarcoma cancer cells (RD) as an experimental model were investigated. The experimental results like cytotoxic effects induced by the given PS on RD cells were dose dependent and the optimum concentration of Photofrin® (100 μg/ml) along with 120 J/cm2 generates the maximum loss in cell viability which is almost 82%. The significant loss in cell viability is the result of interaction of suitable dose of laser light (630 nm of wavelength) with Photofrin®, after excitation of PS, production of reactive oxygen species (ROS), which leads to mitochondria damage and resulting of cell death (cell necrosis/cell apoptosis). Viability of controlled and treated RD cells with optimum dose of light (630 nm) has been assessed by neutral red assay (NRA) and cell damaging effect were verified by staining of mitochondria using Mitotracker® red as an efficient dye as well as reactive oxygen species (ROS) accumulation detection.  相似文献   

4.
Significant apoptotic effect in Hep2c cell line has been investigated, when diode laser (λ = 635 nm, red) are used as a source of illumination and initiation of photodynamic action. The optimal uptake time of Photofrin® for Hep2c cell line was investigated by means of spectrophotometric measurement. Quantification of the live cell population was determined by means of neutral red assay (NRA). The spectrometry measurements showed that after 46 h incubation, the maximal cellular uptake of Photofrin® was achieved and photocytotoxic assay showed that light dose of 120 J/cm2 give effective PDT outcome for Hep2c cell line incubated with 85 μg/ml of Photofrin®. No significant phototoxic and cytotoxic effects on Hep2c cells were observed due to light doses or photosensitize, when studied independently of each other and Photofrin® showed good anti tumor effects.  相似文献   

5.
AlSalhi  M. S.  Atif  M.  AlObiadi  A. A.  Aldwayyan  A. S. 《Laser Physics》2011,21(4):733-739
The present study evaluates the photodynamic damage with 5-aminolevulinic acid (5-ALA) using HeLa as experimental model. HeLa cell line was irradiated with red light (He-Ne laser, λ = 632.8 CW nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of HeLa cells were studied. The optimal uptake of photosensitizer ALA in HeLa cells was investigated by means of PpIX fluorescence intensity by exciting the HeLa cell suspension at 450 nm and a detection wavelength set at 690 nm. Cells viability was determined by means of trypan blue solution. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 4 h in vitro incubation. We found that the combination with 5-ALA and laser irradiation leads to time/concentration-dependent increase of cells death and also energy doses-dependent enlarge the cells death. The fluorescence intensity after PDD of carcinoma cells reduce when compared with the control group. The fluorescence emission spectral profiles after PDD of carcinoma cells showed a dip around 425–525 nm when compared with the control group. This may be due to the damage of mitochondria component of cells. The percentage of HeLa cells after PDD shows that the percentage of cells survival rate as function of laser dose (power). Hence it is clear that at 200 μg/ml ALA and 20 mW laser irradiation, more than 70% of HeLa cells were dead after 15 min.  相似文献   

6.
Photodynamic therapy (PDT) is an approved modality for cancer treatment, which involves the administration of a photosensitive drug (PS) that is selectively accumulated in neoplastic tissues and their vasculature and subsequently can be activated with light at the appropriate wavelength to generate reactive molecular species that are toxic to tissues. In PDT, a great part of the used PS suffers degradation by light (photobleaching) that involves a decrease in the absorption and intensity of fluorescence of the photosensitizer as well as photoproduct formation evidenced by the appearance of a new absorption band. In this study, we investigated the correlation of cytotoxicity and depth of necrosis of Photogem and its photoproducts obtained previously by irradiation at 514 and 630 nm. The cytotoxicity for degraded Photogem decreases with the previous irradiation time of Photogem solution suggesting that the photoproducts of Photogem are less cytotoxics than the original formulation. A transition between the necrosed epithelium and healthy epithelium of normal liver of rats after irradiation at 630 nm was observed with irradiated and nonirradiated PS. It is observed that the depth of necrosis only at irradiation dose of 150 J/cm2 in both concentrations is greater for Photogem followed by Photogem degradated previously at 514 and then at 630 nm. The results obtained suggest that the threshold of necrosis values is lower for Photogem followed by its photoproducts formed, suggesting that the photoproducts present a low photodynamic activity. If the photosensitizer degradation happens at the same time as tumor destruction, the drug degradation can be complete before reaching the threshold of necrosis; then it is very important to control the drug concentration and light intensity of irradiation during PDT.  相似文献   

7.
The aim of this study was the evaluation of the effectiveness of photodynamic therapy on the decontamination of artificially induced carious bovine dentin, using Photogem® as the photosensitizer agent and an LED device as a light source. Dentin samples obtained from bovine incisors were immersed in sterile broth supplemented by Lactobacillus acidophillus 108 colony formation units (CFU) and Streptococcus mutans 108 CFU. Different concentrations of photosensitizer, PA = 1 mg/ml, PB = 2 mg/ml, and PC = 3 mg/ml, and two fluences, D = 24 J/cm2 and D = 48 J/cm2, were investigated. After CFU counting per milligram of carious dentin and statistical analysis, we observed that the photodynamic therapy (PDT) parameters used were effective for bacterial reduction in the in vitro model under study. The best result was achieved with the application of Photogem® at 2 mg/ml and photoactivated under 24 J/cm2 showing a survival factor of 0.14. At higher photosensitizer concentrations, a higher dark toxicity was observed. We propose a simple mathematical expression for the determination of PDT parameters of photosensitizer concentration and light fluence for different survival factor values. Since LED devices are simpler and cheaper compared to laser systems, it would be interesting to verify their efficacy as a light source in photodynamic therapy for the decontamination of carious dentin.  相似文献   

8.
Antimicrobial photodynamic therapy (aPDT) is a non-pharmacological antimicrobial regimen based on light, photosensitizer and oxygen. It has become a potential method to inactivate multidrug-resistant bacteria. However, limited by the delivery of photosensitizer (PS) in biofilm, eradicating biofilm-associated infections by aPDT remains challenging. This study aimed to explore the feasibility of combining ultrasonic irradiation with aPDT to enhance the efficacy of aPDT against methicillin-resistant staphylococcus aureus (MRSA) biofilm. A cationic benzylidene cyclopentanone photosensitizer with much higher selectivity to bacterial cells than mammalian cells were applied at the concentration of 10 μM. 532 nm laser (40 mW/cm2, 10 min) and 1 MHz ultrasound (500 mW/cm2, 10 min, simultaneously with aPDT) were employed against MRSA biofilms in vitro. In addition to combined with ultrasonic irradiation and aPDT, MRSA biofilms were treated with laser irradiation only, photosensitizer only, ultrasonic irradiation only, ultrasonic irradiation and photosensitizer, and aPDT respectively. The antibacterial efficacy was determined by XTT assay, and the penetration depth of PS in biofilm was observed using a photoluminescence spectrometer and a confocal laser scanning microscopy (CLSM). In addition, the viability of human dermal fibroblasts (WS-1 cells) after the same treatments mentioned above and the uptake of P3 by WS-1 cells after ultrasonic irradiation were detected by CCK-8 and CLSM in vitro. Results showed that the percent decrease in metabolic activity resulting from the US + aPDT group (75.76%) was higher than the sum of the aPDT group (44.14%) and the US group (9.88%), suggesting synergistic effects. Meanwhile, the diffusion of PS in the biofilm of MRSA was significantly increased by 1 MHz ultrasonic irradiation. Ultrasonic irradiation neither induced the PS uptake by WS-1 cells nor reduced the viability of WS-1 cells. These results suggested that 1 MHz ultrasonic irradiation significantly enhanced the efficacy of aPDT against MRSA biofilm by increasing the penetration depth of PS. In addition, the antibacterial efficacy of aPDT can be enhanced by ultrasonic irradiation, the US + aPDT treatment demonstrated encouraging in vivo antibacterial efficacy (1.73 log10 CFU/mL reduction). In conclusion, the combination of aPDT and 1 MHz ultrasound is a potential and promising strategy to eradicate biofilm-associated infections of MRSA.  相似文献   

9.
The aim of this study was to investigate the influence of light parameters on yeast cells. It has been proposed for many years that photodynamic therapy (PDT) can inactivate microbial cells. A number of photosensitizer and light sources were reported in different light parameters and in a range of dye concentrations. However, much more knowledge concerning the importance of fluence, fluence rate and exposure time are required for a better understanding of the photodynamic efficiency. Suspensions (106 CFU/mL) of Candida albicans, Candida krusei, and Cryptococcus neoformans var. grubii were used. Two fluence rates, 100 and 300 mW/cm2 were compared at 3, 6, and 9 min of irradiation, resulting fluences from 18 to 162 J/cm2. The light source was a laser emitting at λ = 660 nm with output power adjusted at 30 and 90 mW. As photosensitizer, one hundred-μM methylene blue was used. Temperature was monitored to verify possible heat effect and reactive oxygen species (ROS) formation was evaluated. The same fluence in different fluence rates showed dissimilar levels of inactivation on yeast cells as well as in ROS formation. In addition, the increase of the fluence rate showed an improvement on cell photoinactivation. PDT was efficient against yeast cells (6 log reduction), and no significant temperature increase was observed. Fluence per se should not be used as an isolate parameter to compare photoinactivation effects on yeast cells. The higher fluence rate was more effective than the lower one. Furthermore, an adequate duration of light exposure cannot be discarded.  相似文献   

10.
The use of lectins can play an important role for tracking modification on cell surface components, since lectins can be easily complexed with radioisotopes, biotin or fluorescein, facilitating the evaluation of carbohydrates distribution in the cell and mitochondrial activity. The aim of this study was to evaluate photodynamic therapy effects on indirect distribution of N-acetyl-glucosamine terminal glycoproteins, in human laryngeal carcinoma HEp-2 cell line surface, using lectin wheat germ agglutinin (WGA) and on mitochondrial activity, for the same cell line, using MitoTracker. The photosensitizer Aluminum Phthalocyanine Tetrasulfonate (AlPcS4) was administrated at 10 μM/mL, followed by an incubation period for its accumulation in the tumor cells, which were irradiated with laser diode λ = 685 nm and energy density of 4.5 J/cm2. Our results indicated that, after Photodynamic Therapy (PDT), it was observed N-acetyl glucosamine terminal glycoprotein expression and mitochondrial O2 production, compared to the control group. Based on these results, we suggest that PDT influences the O2 mitochondrial production and the presence of surface glycoproteins N-acetyl glucosamine terminals.  相似文献   

11.
Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8–7.5 μmol/L), incubation time (1–2 h), and laser power (10–100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.  相似文献   

12.
We determined photodynamic therapy (PDT) efficacy using a flash wave (FW) and a continuous wave (CW) light, of which the fluence rate was 70 W/cm2, for murine thymic lymphoma cells (EL-4) cultivated in vitro. The irradiation frequency and the pulse width of the FW light were in the range of 1–32 Hz and less than one millisecond, respectively. 5-Aminolevulinic acid-induced protoporphyrin IX (ALA-PpIX) was used as a photosensitizer. When EL-4 with ALA administration was irradiated by the light for 4 h (irradiation fluence: 1.0J/cm2), the survival rate of EL-4 by the FW light was lower than that by the CW light, except for the FW light with irradiation frequency of 32 Hz, and decreased gradually with decreasing irradiation frequency. Moreover, the FW light, especially at lower irradiation frequency, was superior to the CW light for the generation of singlet oxygen in an aqueous PpIX solution. Therefore, thehigher PDT efficacy for EL-4 of the FW light would be caused by the greater generation of singlet oxygen in the cells.  相似文献   

13.
通过聚二烯丙基二甲基胺盐酸盐和氯金酸制备阳离子纳米金,将纳米金和5-氨基乙酰丙酸(5-aminolevulinic acid, 5-ALA)通过静电吸附作用有效结合得到新型光敏剂。应用共振瑞利散射光谱, 紫外-可见吸收光谱, 透射电镜和激光散射等方法对其进行了表征。结果表明通过这种方法纳米金与5-ALA可以有效结合。这种新型光敏剂对提高光动力学疗法临床疗效具有重要指导意义。  相似文献   

14.
In this work, we performed the synthesis and in vitro characterization of a new class of drug delivery system (DDS) denominated magnetic nanoemulsion (MNE). The association of colloidal nanoparticles with biocompatible magnetic fluids results in a new DDS for application in photodynamic therapy (PDT) and magnetic hyperthermia treatment. It works in a synergic manner with an expected enhancement in tumor damage after minimum drug doses, based on heat dissipation and/or light photosensitization. For this purpose, we investigated the permeation and retention in vitro model using Foscan® as a photosensitizer incorporated in MNE using a Franz diffusion cell and a biological skin model in biomimetic conditions.  相似文献   

15.
This paper proposes to extend the exploration of mouse melanoma B16 cells death by photodynamic therapy (PDT), under irradiation with different light sources and in the presence of 5,10,15,20-tetrap-sulphonato-phenyl-porphyrin (TSPP). The viability studies showed that B16 mouse melanoma is sensitive to photodynamic damage induced by TSPP 1 mM for either one, two, three or four hours. The control had TSPP added immediately prior to timelapse imaging (no incubation). They were then irradiated with red light He-Ne laser (λ = 632.8 nm, energy 180 J/cm2 for 20 min). Also, it has been used a laser diode GaInAs 25 mW/cm2, λ = 650 nm. The cells demonstrated clear morphological changes associated with apoptosis by mitochondrial pathway. There were changes in texture, as expected. Changes appeared to occur more quickly at lamp irradiation than at HeNe and GaInAs diode laser. Addition of TSPP just prior to exposure and observation, with no incubation, did not result in changes in cell morphology or cell death. Also, the proteins changes have been observed, because those with high molecular weights have been scissored under irradiation and this could be reason of the proteins concentrating in the area of low molecular weights, and the dissapearing of the proteic band of 75 kDa in the electrophoregramm. The immunized animals with B16-TSPP had the highest survival rate (40 days) by comparison with the control (death at 20 days) or with immunized animals with supernatants B16 (death at 25 days).  相似文献   

16.
In order to consider the photodynamic therapy (PDT) as a clinical treatment for candidosis, it is necessary to know its cytotoxic effect on normal cells and tissues. Therefore, this study evaluated the toxicity of PDT with Photogem® associated with red light-emitting diode (LED) on L929 and MDPC-23 cell cultures and healthy rat palatal mucosa. In the in vitro experiment, the cells (30000 cells/cm2) were seeded in 24-well plates for 48 h, incubated with Photogem® (50, 100, or 150 mg/l) and either irradiated or not with a red LED source (630 ± 3 nm; 75 or 100 J/cm2; 22 mW/cm2). Cell metabolism was evaluated by the MTT assay (ANOVA and Dunnet’s post hoc tests; p < 0.05) and cell morphology was examined by scanning electron microscopy. In the in vivo evaluation, Photogem® (500 mg/l) was applied to the palatal mucosa of Wistar rats during 30 min and exposed to red LED (630 nm) during 20 min (306 J/cm2). The palatal mucosa was photographed for macroscopic analysis at 0, 1, 3, and 7 days posttreatment and subjected to histological analysis after sacrifice of the rats. For both cell lines, there was a statistically significant decrease of the mitochondrial activity (90–97%) for all Photogem® concentrations associated with red LED regardless of the energy density. However, in the in vivo evaluation, the PDT-treated groups presented intact mucosa with normal characteristics both macroscopically and histologically. From these results, it may be concluded that the association of Photogem® and red LED caused severe toxic effects on normal cell cultures, characterized by the reduction of mitochondrial activity and morphological alterations, but did not cause damage to the rat palatal mucosa in vivo.  相似文献   

17.
Photogem® is a hematoporphyrin derivative that has been used as a photosensitizer in experimental and clinical Photodynamic Therapy (PDT) in Brazil. Photosensitizers are degraded under illumination. This process, usually called photobleaching, can be monitored by decreasing in fluorescence intensities and includes the following photoprocesses: photodegradation, phototransformation, and photorelocalization. Photobleaching of hematoporphyrin-type sensitizers during illumination in aqueous solution is related not only to photodegradation but is also followed by the formation of photoproducts with a new fluorescence band at around 640–650 nm and with increased light absorption in the red spectral region at 640 nm. In this study, the influence of pH on the phototransformation process was investigated. Photogem® solutions, 40 μg/ml, were irradiated at 514 nm with intensity of 100 mW/cm2 for 20 min with different pH environments. The controls were performed with the samples in the absence of light. The Photogem® photodegradation is dependent on the pH. The behavior of photodegradation and photoproducts formation (monitored at 640 nm) is distinct and depends on the photosensitizer concentration. The processes of degradation and photoproducts formation were monitored with Photogemin the concentration of 40 μg/mL since that demonstrated the best visualization of both processes. While below pH 5 the photodegradation occurred, there was no detectable presence of photoproducts. The increase of pH led to increase of photoproducts formation rate with photodegradation reaching the highest value at pH 10. The increase of photoproducts formation and instability of Photogem® from pH 6 to pH 10 are in agreement with the desired properties of an ideal photosensitizer since there are significant differences in pH between normal (7.0 < pH < 8.6) and tumor (5.8 < pH < 7.9) tissues. It is important to know the effect of pH in the process of phototransformation (degradation and photoproduct formation) of the molecule since low pH values promotes increase in the proportion of aggregates species in solution and high pH values promotes increase in the proportion of monomeric species. There must be an ideal pH interval which favors the phototransformation process that is correlated with the singlet oxygen formation responsible by the photodynamic effect. These differences in pH between normal and tumor cells can explain the presence of photosensitizers in target tumor cells, making PDT a selective therapy.  相似文献   

18.
Ikram  M.  Khan  R. U.  Firdous  S.  Atif  M.  Nawaz  M. 《Laser Physics》2011,21(2):427-433
In this prospective study duly approved from Institutional Ethics Review Committee for research in medicine, PAEC General Hospital Islamabad, Pakistan, we investigate the efficacy, safety and tolerability along with cosmetic outcome of topical 5-aminolaevulinic acid photodynamic therapy for superficial nonmelanoma skin cancers (NMSCs) and their precursors. Patients with Histological diagnosis of NMSCs and their precursors were assessed for PDT, after photographic documentation of the lesions and written consent, underwent two (2) sessions of PDT in one month (4 weeks) according to standard protocol. A freshly prepared 20% 5-ALA in Unguentum base was applied under occlusive dressing for 4–6 h as Drug Light Interval (DLI) and irradiated with light of 630 nm wavelength from a diode laser at standard dose of 90 J/cm2. Approximately 11% patients reported pain during treatment which was managed in different simple ways. In our study we regularly followed up the patients for gross as well as histopathological response and recurrence free periods during median follow-up of 24 months. Regarding Basal cell carcinomas complete response was observed in 86.2% (25/29), partial response in 10.3% (3/29) and recurrence during first year in 3.5% (1/29) lesions. All the lesions which showed partial response or recurrence were nBCCs. Regarding Actinic Keratosis complete response was observed in 95.3% (20/21), partial response in 4.7% (1/21) while Bowen’s disease showed 100% (2/2) results. 81.8% (9/11) Squamous Cell Carcinomas showed complete, 9% (1/11) partial response and 9% (1/11) presented with recurrence after 3 months. We observed excellent and good cosmetic results along with tumor clearance in our study. Treatment sessions were well tolerated with high level of patient’s satisfaction and only minor side effects of pain during treatment sessions and inflammatory changes post photodynamic therapy were observed. We concluded that 5-ALA PDT is an effective and safe emerging treatment modality for management of superficial non-melanoma skin cancers and their precursors with better cosmetic outcome and minor side effects.  相似文献   

19.
In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125–8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.  相似文献   

20.
Photodynamic therapy (PDT) is a promising method for cancer therapy. However, it is constrained by limited penetration depth of visible light, hydrophobicity of photosensitizers, and lack of tumor targeting. In this work, the photosensitizer zinc phthalocyanine (ZnPc) and upconversion nanocrystals (UCNs) are encapsulated into OQPGA‐PEG/RGD/TAT lipid micelles. The UCNs acting as a nanotransducer convert deep‐penetrating near‐infrared (NIR) light to visible light for activating the photosensitizer. OQPGA‐PEG/RGD/TAT lipid micelles are used as a carrier for the photosensitizer, with improved biocompatibility and cancer‐targeting ability. The results show that the photosensitizer ZnPc‐ and UCNs‐loaded OQPGA‐PEG/RGD/TAT lipid micelles are nanoparticles with an average size of 25 nm. The lipid micelle nanoparticles are stable in water with low leakage of photosensitizer. The absorption peak of the photosensitizer overlaps with the emission peak of UCNs, so the visible fluorescence emitted from the UCNs upon excitation by the NIR laser at 980 nm can activate the photosensitizer to produce singlet oxygen for PDT. The targeting RGD peptide and cell‐penetrating TAT peptide on the surface help the nanoparticles getting into cancer cells. The OQPGA‐PEG/RGD/TAT lipid micelles encapsulated with both the photosensitizer ZnPc and UCNs could be used for targeted PDT by using deep‐penetrating NIR light as the light source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号