首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
陈磊  翁鼎  汪家道  翁端  曹丽 《催化学报》2018,39(11):1804-1813
在铈钛基NH3-SCR催化材料中,改性元素对催化材料的酸性位和氧化还原性能的影响较大.本文采用过量浸渍法分别制备了CeO2-TiO2(CeTi)和CeO2/WO3-TiO2(CeWTi)催化剂,研究了CeWTi催化材料结构、酸性位及氧化还原性能对NH3-NO/NO2 SCR反应性能的影响.结果发现,CeTi和CeWTi样品均有较优异的NH3-NO/NO2 SCR催化性能,后者略高.WO3的加入增加了催化材料的表面酸性,对其氧化还原性能影响不大.通过对反应中间物种NH4NO3的研究,发现NH4NO3的分解主要与氧化还原性能相关,而NO还原NH4NO3的反应需要氧化还原能力和酸性位共同作用,即在氧化还原性能差异不大的条件下,酸性对该反应起到重要作用.而该反应也是NH3-NO/NO2 SCR的限速步骤,这是CeWTi催化材料活性高于CeTi催化材料的原因.同时,为了获得NH3-NO/NO2 SCR反应的高活性,NO2:NO比例宜为1:1.然而现实情况中,预氧化催化材料的氧化活性、NOx浓度、温度等变量使得准确控制NO2的比例较难,因此,深入了解NO2浓度对NH3–NO/NO2 SCR反应的影响至关重要.本文探讨NO2:NO的比例、O2浓度等对NH3-NO/NO2 SCR反应性能的影响;并研究了不同NO2含量条件下NH3-NO/NO2 SCR反应网络.通过分析CeWTi材料上NH3-NO/NO2 SCR反应网络可知,当NO与NO2比例为1:1时,NH3-SCR催化活性最高,并以快速SCR形式进行;当NO与NO2比例为1:1消耗完全之后,剩余的NO或NO2各自独立以标准或慢速SCR进行,不影响其本来的反应活性.催化材料的标准SCR、快速SCR和慢速SCR均取决于材料表面酸度和氧化还原性能,但快速SCR和慢速SCR对材料这两方面性能的要求相对较低.同时O2并不参与快速和慢速SCR,而NO2可以取代O2作为SCR反应中主要的氧化剂,氧化Ce4+为Ce3+,甚至比O2和NO再氧化活性位的能力更强,保持催化材料的高催化活性.低温条件时,慢速SCR和快速SCR反应均在材料表面生成硝酸铵中间物种,但由于慢速SCR气氛中缺乏NO将硝酸铵还原,进而引发快速SCR反应,因此材料表面快速SCR的NOx转化率要高于慢速SCR反应;高温条件下,由于硝酸铵容易热分解,导致硝酸铵的抑制效应不太明显.NH4NO3分解是NO2含量升高后N2O的形成的主要途径.  相似文献   

2.
由发电厂等固定源和柴油机等移动源排放的一氧化氮(NO)造成的环境污染问题日益严重.随着严苛的排放法规出台,NO排放控制技术受到越来越多关注.NH_3选择性催化还原(SCR)技术是目前去除NO应用最为广泛的方法之一.商业催化剂V_2O_5-WO_3/TiO_2在300–400℃温度窗口内显示出优越的NO去除效率,但仍存在一些问题,如钒氧化物的毒性以及在高温时形成N2_O和SO_3.因此,开发出低钒或无钒的新型催化剂是解决上述问题的关键.CeO_2和含铈材料是重要的催化剂载体,具有良好的还原能力和氧存储功能,因而广泛应用于催化领域.CeO_2添加到商用催化剂中不仅可以降低钒用量,而且可以提高催化剂抗碱金属中毒能力.CeO_2-WO3催化剂在200℃以上时比商用催化剂具有更宽的温度窗口,并展现出较高的抗SO_2和碱金属中毒能力.CeO_2-ZrO_2催化剂通过添加过渡金属元素可以提升其SCR活性,在较宽的温度窗口内具有较高的催化活性.废气中SO_2可导致催化剂失活,在实际应用中催化剂硫中毒是较为常见的催化剂失效原因.通常情况下,锰基和铁基催化剂最容易硫中毒.然而CeO_2催化剂在硫酸化处理后却展现出良好的SCR活性.催化剂硫酸化主要包括气相、液相和前驱体硫化三种方法.三种方法各有异同,但在催化剂表面形成的硫物种都是SO_4~(2–).硫酸化可以增强Ce基催化剂的SCR活性,但是对于硫化引起的催化剂表面酸性、氧化还原性以及NO吸附脱附性质的详细研究报道较少.本文通过液相法对CeO_2-ZrO_2(CeZr)催化剂进行了硫酸化.XRD结果表明,硫酸化并未对催化剂结晶结构产生影响.TPD和TPR结果表明,硫酸化后催化剂(S-CeZr)表面酸性增强,但抑制了其氧化性.通过原位红外光谱技术系统研究了催化剂在SCR反应过程中表面物种的变化,结果发现,CeZr和S-CeZr的催化机理相同,不同的SCR活性主要是由表面酸性和氧化性引起的.CeO_2基催化剂在不同温度窗口遵循不同反应机理.CeZr催化剂具有较强的氧化还原性,使其对NO和NH_3具有很强的氧化能力,所以其在低于200℃时具有较好的SCR活性.而S-CeZr催化剂具有更多的Br?nsted酸性位,导致NO不易吸附在催化剂表面,所以其在低温时SCR活性较差,但在高温时(200℃)具有优良的SCR活性.通过SCR活性和反应机理研究,发现在高温时(200℃),表面酸性尤其是强酸Br?nsted酸性位在SCR反应中起到决定性作用;而在低温时(200℃),酸性位对NH_3分子较强的键合作用导致NH_3难以被氧化,所以较强的酸性位对SCR活性具有抑制作用,而氧化还原性在低温时对SCR反应起到主要作用.同时,在高温时,较高的氧化性可使NH_3被O_2直接氧化,导致N_2选择性降低.  相似文献   

3.
氮氧化物NO_x(NO和NO_2)对大气的污染日益严重,主要表现为形成酸雨、导致光化学烟雾和产生温室效应等,严重危害人类健康.氨气选择性催化还原(NH_3-SCR)NO_x是目前最有效的固定源NO_x消除技术.工业中常用的催化剂主要是V_2O_5-WO_3/TiO_2,但其活性组分V_2O_5有毒,且存在氧化能力较强和操作温度窗口过窄等缺点.开发新型环境友好的非钒基NH_3-SCR催化剂体系己成为NO_x催化净化领域的研究热点.CeO_2在稀土市场中占有很大比重且相对廉价,同时还具有优异的氧化-还原及储氧性能,因此开发Ce基SCR脱硝催化剂具有非常好的发展前景.对于NH_3-SCR反应,催化剂必须同时具有酸性位和氧化还原中心.酸性位有利于还原剂NH_3的吸附与活化,而氧化还原中心可以促使氧化剂和还原剂之间发生反应.对于低温SCR催化剂,表面酸性适中即可,氧化还原性能起决定作用;而对于中高温SCR催化剂,不仅要提高其表面酸性以保证足够的NH_3吸附量,同时还要控制其表面氧化性不宜太强,否则在高温段NH_3氧化,N_2选择性下降,NO转化率降低.CeO_2具有一定碱性以及优异的氧化还原性能,因此在高温阶段CeO_2催化剂上易发生NH_3深度氧化,高温NH_3-SCR活性差,温度窗口窄.为了拓宽CeO_2基催化剂的温度窗口,改善其催化性能,有必要调整CeO_2的氧化还原性能和酸碱性能.过渡金属磷酸盐或焦磷酸盐具有特殊的表面酸性和氧化还原性,被广泛应用于多种催化反应.考虑到过渡金属磷酸盐或焦磷酸盐表面同时具有酸性位和氧化还原中心,因而可用于NH_3-SCR反应.最近本课题组通过水热法制备了一种环境友好的Ce-P-O催化剂,该催化剂在较宽的温度范围(300-550℃)内表现出较高的催化NO转化能力,同时具有较强的抗碱和耐硫能力,显示出很好的应用前景.此外,硫酸盐和镍盐修饰能有效改善铈锆固溶体催化剂的NH_3-SCR性能:镍修饰增强了铈锆固溶体的Lewis酸性,有利于提高催化剂的低温活性,而硫酸盐改性提高了催化剂的Bronsted酸性,因此有利于催化剂高温下吸附NH_3,抑制了NH_3的过度氧化.另外,磷酸盐修饰能提高铈锆固溶体催化剂NH_3-SCR反应活性.然而,有关催化剂结构系统表征鲜见报道,催化剂的构效关系阐述不够详细.本文采用浸渍法将不同量的H_3PO_4负载于CeO_2上制备了H_3PO_4修饰的CeO_2催化剂,发现H_3PO_4修饰能显著改善CeO_2催化剂的NH_3-SCR性能.本文对催化剂结构进行了系统表征,详细探讨了H_3PO_4促进作用的原因.NH_3-SCR活性测试显示,H_3PO_4修饰后,催化剂活性显著提高,部分抑制了高温时CeO_2催化剂上NH_3的直接氧化,提高了SCR反应的选择性,从而拓宽了温度窗口.X射线衍射、红外光谱和拉曼光谱表征结果发现,随着H_3PO_4负载量增加,样品中CeO_2相逐渐减少,而新相如CeP_2O_7和Ce(PO_3)_4等逐渐增多,多磷酸根阴离子可能是表面酸性增强的关键因素.NH_3程序升温脱附和吸附吡啶红外光谱结果表明,随着H_3PO_4修饰量的增加,样品的酸强度逐渐增大,Lewis酸性逐渐减弱至消失,而Bronsted酸性逐渐增强.增强的Bronsted酸性可能归因于H_3PO_4修饰后样品表面不断增加的P-OH基团.相对于Lewis酸,Bronsted酸性位氧化能力更弱,可以抑制高温下NH_2(ads)继续脱氢,避免了NH_3深度氧化.程序升温还原测试结果表明,H_3PO_4修饰后,各还原峰向高温偏移,偏移量随H_3PO_4负载量增加而增加.这说明H_3PO_4修饰后CeO_2的氧化还原能力降低,抑制了高温下NH_3的过度氧化.因此,H_3PO_4的修饰使得CeO_2催化剂高温NH_3-SCR活性和N_2选择性大幅提高.综上所述,H_3PO_4-CeO_2样品优异的脱硝催化活性可能归因于H_3PO_4修饰后催化剂酸性,尤其是Bronsted酸性的增强以及氧化还原性的降低.  相似文献   

4.
氮氧化物(NO_x)是一种主要的大气污染物,采用氨选择性催化还原(NH_3-SCR)是实现NO_x排放控制的最有效手段。以V_2O_5/TiO_2为研究对象,通过引入CeO_2对其结构及表面性质进行改性,显著提高了V_2O_5/TiO_2催化剂的NH_3-SCR反应性能,其中1%(质量分数)V_2O_5/Ce_(0.1)Ti_(0.9)O_2催化剂在180~470℃内NO_x的转化率在80%以上,具有较宽的温度操作窗口和良好的抗硫稳定性。表征结果表明:CeO_2的引入可抑制TiO_2晶体的长大,产生更多的结构畸变,并显著增大催化剂的比表面积。V和Ce物种之间的相互作用促进了催化剂表面V~(5+)物种的形成,增强了催化剂对NO的吸附和氧化能力,并提供较多的弱和中等强度的酸性位,导致其低温SCR反应性能的显著升高;但同时表面强酸中心数量的减少以及NH_3非选择性氧化能力的升高,使其高温区SCR的活性明显降低。  相似文献   

5.
CO催化还原NO是发生在汽车尾气净化催化剂中的一个重要化学反应.CeO_2容易发生氧化还原反应CeO_2?CeO_2-x+(x/2)O_2而具有氧储存/释放作用,可以有效地促进CO氧化,因而CeO_2作为储氧材料和催化助剂被广泛应用于汽车催化剂中.在过渡金属元素中,铑对NO的解离活性最高,是目前汽车三效催化剂中最为重要的还原性活性组分.目前,有关Rh-CeO_2基催化剂表面CO还原NO的文献仅关注催化反应活性和N_2O选择性,对CO还原NO反应机理的理解还不够深入准确--,无法为轻型汽油车NH_3排放控制提供正确有用的理论基础.NH_3排放至大气中会以NH_4+形式与SO_24和NO_3离子结合,导致二次颗粒物污染,因此,研究CO还原NO反应中NH_3生成机理对轻型汽油车NH_3排放控制具有非常重要的理论意义.我们研究组强调了CO催化还原NO反应的表面羟基介导NH_3生成问题,并通过原位漫反射傅里叶变换红外光谱(in-situ DRIFTS),傅里叶变换红外光谱(FT-IR),程序升温还原/氧化(TPR/TPO)等现代分析表征技术深入研究了CO还原NO反应机理,并首次提出了催化剂表面"羟基脱氢"反应的NH_3生成机理.研究发现,Rh-CeO_2催化剂表面CO还原NO反应的NH_3选择性最高可达9.7%,其反应表观活化能仅为36 kJ/mol,in-situ DRIFTS,FT-IR和NO-TPO测试结果表明,NH_3的生成可归因于催化剂表面"羟基脱氢"反应,即CO与催化剂表面端位羟基和桥式羟基发生"水煤气转化"反应生成H_2,反应产生的H_2还原NO生成NH_3;CeO_2中非骨架铈双羟基化形成的类氢氧化铈物种则会直接与NO发生脱氢反应生成NH_3,但需要更高的反应温度.值得注意的是,当反应气中额外通入5%水蒸气时,其反应表观活化能提高了21 kJ/mol(同比增加58.3%),更重要的是NH_3选择性明显提高,最高可达25.3%(同比增加160.8%),FT-IR测试结果表明,这是由于水蒸气作用促使催化剂表面羟基化,表面活性氢源得以不断补充.这从动力学角度促进了端位羟基和桥式羟基的"水煤气转化"反应而提高NH_3选择性.同时,对比NO/H_2,CO/NO和CO/NO/H_2O反应的NH_3生成浓度,我们还发现,H_2O分子与NO的竞争吸附会抑制未解离吸附的NH_3进一步还原NO,减少反应生成NH_3的消耗,促使更多生成的NH_3从催化剂表面脱附至气相中,这也是水蒸气导致NH_3选择性明显增加的重要原因.以上结果清晰地表明了催化剂表面"羟基脱氢"作用和水蒸气分子与NO的竞争吸附行为对CO还原NO反应中NH_3生成的重要影响.  相似文献   

6.
近年来,氨-选择催化还原(NH_3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NO_x)排放的最有效手段之一.V_2O_5-WO_3/TiO_2和V_2O_5-MoO_3/TiO_2催化剂在300-400°C范围内表现出优异的脱硝性能和抗H_2O和SO_2中毒性能,因而被广泛用于NH_3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO_2到SO_3的活性较高、高温下将部分NH_3非选择性地氧化成N_2O、V_2O_5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO_2)因具有氧化还原性能优异、储/释氧能力强和Ce~(3+)/Ce~(4+)转换容易等优点而广泛用于NH_3-SCR反应.然而,单纯CeO_2的脱硝性能并不理想.研究表明,将CeO_2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH_3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH_3-SCR催化性能的影响规律尚不明晰.此外,SiO_2,γ-Al_2O_3,ZrO_2和TiO_2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH_3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH_3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO_2,γ-Al_2O_3,ZrO_2和TiO_2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO_2/SiO_2,CeO_2/γ-Al_2O_3,CeO_2/ZrO_2和CeO_2/TiO_2)用于NH_3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H_2-TPR)以及氨气-程序升温脱附(NH_3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO_2/γ-Al_2O_3催化剂的表面Ce3+含量明显大于CeO_2/SiO_2,CeO_2/ZrO_2和CeO_2/TiO_2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH_3-SCR反应性能.其次,CeO_2/γ-Al_2O_3催化剂具有最佳的还原性能,有利于NO氧化为NO_2,进而通过"快速NH_3-SCR"途径提升其催化性能.再者,CeO_2/γ-Al_2O_3催化剂表面酸性位最多,能够促进反应物NH_3分子的吸附与活化,从而提高脱硝性能.最后,CeO_2/γ-Al_2O_3催化剂在H_2O和SO_2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

7.
商业选择性催化还原(SCR)催化剂成分主要有V_2O_5,WO_3和TiO_2,但适用温度窗口较窄(300-400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯TiO_2和ZrO_2载体,TiO_2-ZrO_2具有较高的热稳定性以及较多的酸位,虽然有关TiO_2-ZrO_2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对NH_3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同NH_3-SCR脱硝催化剂的起活温度不同.同时,NH_3和NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究NH_3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的TiO_2-ZrO_2固溶体,并分步浸渍不同质量比的WO_3和1%V_2O_5,最终得到一系列1%V_2O_5-x%WO_3/TiO_2-ZrO_2.然后通过X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了WO_3和ZrO_2对催化性能的影响以及V_2O_5-WO_3/TiO_2-ZrO_2催化剂的反应机理.N2物理吸附结果表明,WO_3的添加使得催化剂孔结构的热稳定性有所提高,同时随着WO_3含量增加催化剂的比表面积逐渐减小,但仍高于V_2O_5/TiO_2-ZrO_2催化剂;ZrO_2对催化剂比表面积增大效果比较明显.结合XRD结果表明,WO_3能促进金属氧化物在载体上的分散;相比于V_2O_5-WO_3/TiO_2催化剂,ZrO_2有利于活性组分的分散负载.比较系列V_2O_5-x%WO_3/TiO_2-ZrO_2的氨吸附情况,发现WO_3的添加增加了Br?nsted酸的稳定性,其中以9%WO_3的效果最显著.催化剂氨吸附中间物种(–NH_2)的发现,证实了WO_3添加促进了NH_3的活化,有利于脱硝反应的进行.SCR反应结果显示,V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂在300–450 ℃时NO_x转化效率最优,并发现O_2的存在促进了NO_x的转化.采用in situ DRIFTS研究了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂脱硝机理,300和350 ℃时NH_3,NO,NO+O_2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为Lewis酸中心,Br?nsted酸中心的NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与NH_3相比,NO只能以NO_2的形式弱吸附在催化剂表面.因此,该催化剂遵循Eley-Ridel脱硝机理.而V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂具有相对较高的脱硝效率,因此用来着重研究NH_3-SCR机理.在NH_3吸附过程中,NH_3(1204,1602,3156,3264,3347 cm~(-1))和活性中产物NH_2(1550 cm~(-1))在催化剂表面的吸附(恒温300 ℃)是稳定的;随后通入NO+O2时,NH_3吸附过程中的所有吸收峰(包括NH_2)均逐渐减小(NH_3吸附态与NO结合后分解为N_2和H_2O),同时出现H_2O的振动峰,这证明了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂的脱硝反应过程.各类气体吸附情况表明,NO在商业催化剂的吸附状态与V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂相同;但NH_3吸附结果表明,Br?nsted酸中心和Lewis酸中心都是催化剂的活性中心;NO+O_2的通入使得催化剂表面的NH_3和NH~(4+)都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的NO_x脱除路径.通过in situ DRIFTS比较O_2的存在对脱硝反应产生的不同影响来确定O_2的作用.两类催化剂上O_2均参与了H_2O的形成,促进了催化反应的完成;当O_2不存在时,NO的还原受到了极大地抑制,同时也未出现H_2O;两者的脱硝效率大大降低.H_2-TPR和NH_3-TPR结果进一步证实O_2的作用主要是氧化NO及参与催化过程H_2O的形成.  相似文献   

8.
燃煤飞灰中的碱金属和碱土金属对NH_3-SCR催化剂的活性有显著的影响.近年来,研究者针对碱金属/碱土金属氧化物对SCR催化剂中毒作用开展了大量研究.另一方面,研究普遍认为,含溴化合物对提高SCR催化剂汞氧化性能具有明显促进作用.目前为止,针对碱金属/碱土金属溴化物对SCR催化剂影响的系统研究较少.我们课题组系统研究了不同阳离子的溴化物(NH_4Br,NaBr,KBr和CaBr_2)对商用V_2O_5-WO_3/TiO_2催化剂性能的影响.与未中毒样品相比,KBr中毒后的催化剂(记为L-KBr)上NO_x转化率明显下降,而NaBr和CaBr_2中毒的催化剂(分别记为L-NaBr和L-CaBr)上的SCR活性也有一定程度的降低.另外L-NaBr,L-KBr和L-CaBr催化剂的N_2选择性较差.XPS结果显示,KBr中毒后化学吸附氧(O_α)比例减小;同时,KBr中毒后还原性和表面酸度降低,这些可能是导致L-KBr催化剂的活性和N_2选择性变差的主要原因.对于L-CaBr催化剂,中毒后化学吸附氧O_α比例有所增加,这与H2-TPR结果显示可还原性增强一致.O_2-TPO结果显示,L-CaBr催化剂可氧化性降低,说明CaB_r2中毒还是影响到催化剂表面的氧化还原循环.催化剂CaBr_2中毒后表面被覆盖减少了反应活性位数量,但表面酸性的增强可能会抵消活性位点损失带来的负面影响.NH_3氧化结果显示,NH_3在L-CaBr催化剂表面发生过氧化反应,特别是高温下生成较多N_2O,降低N_2选择性,这可能是高温下L-CaBr催化剂SCR活性和N_2选择性下降的重要原因.CO_2-TPD结果表明,L-KBr和L-CaBr催化剂表面碱性强度增加,可能有助于增加NO_x物种的吸附量.基于以上活性评价和表征分析结果,我们尝试建立了不同溴化物中毒的催化剂表面酸碱性、氧化还原和催化性能之间的关系.  相似文献   

9.
以粉末Al_2O_3为载体,通过浸渍Rh(NO_3)_3制备Rh/Al_2O_3催化剂;再以Rh/Al_2O_3、粉末Cr_2O_3和铝胶经过研磨混合制得催化剂活性浆料;将催化剂活性浆料涂覆到堇青石蜂窝陶瓷载体表面,经烘干,焙烧制得不同Rh含量的Rh/Al_2O_3-Cr_2O_3系列整体式催化剂.研究了该类催化剂的二氯甲烷催化氧化性能,发现Rh负载量为0.4 g/L的Rh/Al_2O_3-Cr_2O_3催化剂活性最佳,且未生成含氯中间产物.结合催化剂的表征结果发现,Rh的添加可增加催化剂的表面酸性和氧化还原性能,二者的协同作用提高了催化剂活性;而Cr_2O_3的存在有利于CH_3Cl中间体的进一步氧化,从而提高了催化剂的选择性.  相似文献   

10.
主要考察了NO2对Cu/SAPO-34分子筛催化剂在整个温度范围内(100-500°C)NH3选择性催化还原(SCR)NO性能的影响.研究所使用样品为新鲜Cu/SAPO-34催化剂在750°C下水热处理4 h的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化.活性评价实验结果表明,NO2会抑制催化剂的低温(100-280°C)活性,但其存在会提高催化剂的高温(280°C以上)活性.与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N2O)的浓度增大.动力学结果表明,Cu/SAPO-34催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ?mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ?mol-1)更大.In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Br?nsted酸性位上的NH3物种反应生成NH4NO3.低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

11.
V_2O_5/WO_3-TiO_2是NH_3-SCR领域应用最为广泛的商用脱硝催化剂,该催化剂具有良好的抗硫中毒性能;但其水热稳定性却相对较差,高温条件下运行会严重失活.这主要是由于锐钛型TiO_2在高温下发生团聚或相变,生成比表面积较小的晶红石型TiO_2,进而导致活性组分V_2O_5和WO_3团聚或挥发.结局问题的关键是提高载体TiO_2的水热稳定性,而添加Al,Zr和Si等元素对TiO_2进行改性则被认为是最有效的方法之一.Si改性的V_2O_5/WO_3-TiO_2催化剂水热老化后仍然具有较高的比表面积、较多的酸性位和稳定晶体结构,但其作用机理仍不明确.本文分别考察了750oC水热老化处理24h对V_2O_5/WO_3-TiO_2和V_2O_5/WO_3-TiO_2-SiO_2催化剂结构和催化活性的影响,并采用X射线衍射(XRD)、氢气程序升温还原(H_2-TPR)、拉曼光谱(Raman)和氨气程序升温脱附(NH_3-TPD)等手段研究了Si改善V_2O_5/WO_3-TiO_2催化剂水热稳定性的原因.结果表明,水热老化后,Si改善的催化剂和载体的比表面积降幅较小.XRD结果表明,Si添加到TiO_2中可形成Ti-O-Si固溶体,固溶体的形成使TiO_2晶界能提高,可防止水热老化过程中TiO_2的团聚和相变,进而提高其水热稳定性.负载V后,Si对载体的稳定作用则更加明显.这主要是因为低熔点的V_2O_5会加剧载体的团聚和相变.结合H_2-TPR和Raman结果可知,V_2O_5/WO_3-TiO_2催化剂水热老化后发生TiO_2团聚或相变,进而导致活性组分多聚态V_2O_5团聚生成V_2O_5晶粒或Ti-V-O固溶体,而后者对SCR反应活性的贡献非常低;同时,水热老化还使得助剂WO_3从WO_3-TiO_2中脱离出来,因而导致催化剂活性和选择性下降.然而由于V_2O_5/WO_3-TiO_2-SiO_2催化剂载体具有良好水热稳定性,经水热处理后仍保持着锐钛晶型和较小的晶粒,抑制了活性组分V_2O_5的严重团聚或形成固溶体;同时还使得高分散态V_2O_5轻微团聚形成主要活性组分多聚态V_2O_5,因此催化活性反而提高.另外,由于V_2O_5/WO_3-TiO_2-SiO_2催化剂中形成了Ti-O-Si固溶体,进而产生更多的酸性位,水热处理后,其酸性位降低幅度较小;而V_2O_5/WO_3-TiO_2催化剂酸性位数量明显减少,这与其载体和活性组分的烧结和相变相关,这也是导致其失活的主要原因之一.  相似文献   

12.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO_2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO_2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO_2进一步转化为溶解度高的N_2O_5,传统脱硫石膏浆液即可实现高效吸收N_2O_5,从而有效提高氮氧化物吸收效率.但由于N_2O_5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70 ℃下,O_3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N_2O_5生成的总包反应(2NO+3O_3=N_2O_5+3O_2)可以看出,O_3/NO摩尔比为1.5时即可实现N_2O_5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m~3,反应温度100 ℃,O_3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO_2的浓度分别低于20 mg/m~3(Fe-Mn)和50 mg/m~3(Ce-Mn),臭氧残留浓度低于25 mg/m~3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N_2O_5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NO_x50 mg/m~3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn~(4+)和Mn~(3+)的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N_2O_5生成效率.  相似文献   

13.
铈基材料在氨选择性催化还原氮氧化物(NH_3-SCR)的研究中备受关注,亦被认为是潜在的新型环境友好型催化剂.CeO_2具有独特的氧化还原性能和优良的储释氧性能,易与其它金属氧化物发生协同催化而有利于提高催化剂的催化反应性能,而WO_3可以改善催化剂的表面酸性.研究亦报道了WO_3可以改善CeO_2的NH_3-SCR反应的高温活性和N2选择性,其原因在于WO_3增加了铈基催化剂NH_3的吸附性能且抑制了NH_3非选择性氧化成NOx.我们采用浸渍法制备了一系列负载型WO_3/CeO_2催化剂,并利用XRD,Raman,XPS,H2-TPR,NH_3-TPD和in situ DRIFT对其理化性质进行了表征,系统研究了WO_3负载量对WO_3/CeO_2催化剂NH_3-SCR催化性能的影响,主要研究的内容包括:(1)WO_3/CeO_2催化剂中WO_3的状态与催化性能之间的关系;(2)WO_3负载量对WO_3/CeO_2催化剂的NH_3和NO吸附行为的影响.NH_3-SCR反应测试表明WO_3负载量对WO_3/CeO_2催化剂有显著影响,优化的WO_3/CeO_2催化剂在200–450°C具有良好的脱硝性能,且在300°C通入SO2+H2O条件下依然保持优异的催化活性.XPS和H2-TPR结果表明,WO_3分散在CeO_2表面抑制了CeO_2表面活性氧和表面晶格氧的氧化能力,这导致催化剂对NO的氧化以及对硝酸盐的吸附性能相比于纯CeO_2显著降低,同时,in situ DRIFT也证实,随着WO_3负载量的增加,WO_3/CeO_2催化剂表面吸附硝酸盐能力下降.因此,我们认为,由于低活性的晶相WO_3覆盖在催化剂表面,阻碍了催化剂的表面活性位,降低了催化剂的氧化还原能力和表面酸量,从而晶相WO_3抑制了WO_3/CeO_2催化剂的催化活性.同时,我们发现在70°C下采用氨水可以洗掉WO_3/CeO_2催化剂中的晶相WO_3,且洗涤后的样品催化活性有所提升,这进一步验证了晶相WO_3对催化活性的抑制作用.In situ DRIFT结果表明WO_3/CeO_2催化剂上NH_3-SCR反应是通过Eley-Rideal机理进行,即吸附NH_3物种与气相NO之间发生反应.随着WO_3负载量的增加,WO_3/CeO_2催化剂中NH_3的吸附能力先增强后减弱,而NO吸附能力持续减弱,这有利于表面酸位在反应过程中不被硝酸盐阻碍,当WO_3负载量在分散容量附近时,这种吸附特性的效果发挥到最大,从而最大限度地促进NH_3-SCR反应按照Eley-Rideal机理顺利进行.  相似文献   

14.
采用沉淀法制备了Fe(OH)_3和Fe_2O_3。通过硫酸化处理得到SO_4~(2-)/Fe(OH)_3和SO_4~(2-)/Fe_2O_3两种催化剂,并将其应用于氨选择性催化还原NO_x(NH_3-SCR)反应,研究了SO_4~(2-)功能化处理对Fe_2O_3催化剂上NH_3-SCR脱硝性能的促进机理。结果表明,与纯的Fe_2O_3相比,硫酸化处理得到的催化剂上SCR活性得到显著提升;其中,SO_4~(2-)/Fe(OH)_3表现出更加优异的催化性能,在250-450℃时NO_x转化率高于80%,且具有优异的稳定性和抗H_2O+SO_2性能。XRD、Raman、TG、FT-IR、H_2-TPR、NH_3-TPD和in situ DRIFTS等表征结果显示,硫酸功能化处理能抑制Fe_2O_3的晶粒生长,同时SO_4~(2-)与Fe~(3+)结合形成硫酸盐复合物,提高了催化剂表面酸性位点的数量和酸强度,抑制了Fe_2O_3上的氨氧化反应,从而提高了其脱硝催化性能。  相似文献   

15.
采用分步浸渍法制备不同CeO_2含量改性SiO_2-Al_2O_3载体的Pt/SiO_2-Al_2O_3柴油车氧化催化剂Pt/SiO_2-Al_2O_3-wCeO_2(质量分数w为0%,5%,10%,15%,30%)。利用固定床反应器,在模拟柴油车行驶条件下测定催化反应活性。活性结果表明,无论CO和C3H6存在与否,适量CeO_2的添加均明显提高了Pt/SiO_2-Al_2O_3柴油车氧化催化剂的NO氧化性能。其中,Pt/SiO_2-Al_2O_3-15%CeO_2表现出了最优氧化性能,其能在较宽温度范围内维持61%的NO_2产率。CO-化学吸附结果表明,适量CeO_2的添加有利于提高Pt的分散度,即提高催化剂表面可利用Pt原子比例。透射电镜(TEM)结果证实了CeO_2改性后高分散的Pt颗粒的存在,X射线衍射(XRD)结果也说明CeO_2改性后的载体更利于抑制Pt晶粒的增长。氢气程序升温还原(H2-TPR)和TEM结果均说明CeO_2的添加增强了贵金属-载体间的相互作用,从而更利于PtO_x与CeO_2还原。总之,本文表明CeO_2改性柴油车催化剂(DOC)可以提高催化剂的分散性和还原性,从而提高NO催化氧化性能,其对工业应用中柴油车尾气净化后处理复合系统(DOC+DPF+SCR)的净化效率的提高有重要意义。  相似文献   

16.
采用自发沉积法制备了非晶态Ce O_2@Ti O_2催化剂,通过XRD、Raman光谱、TEM、N_2吸附、H_2-TPR、NH_3-TPD及FTIR等手段表征了催化剂结构和表面性质,研究了Ce O_2@Ti O_2在选择催化还原脱NO反应中的催化性能。结果表明,非晶态Ce O_2@Ti O_2催化剂中Ce与Ti间存在很强的相互作用,能够在原子水平上相互结合,表现出与晶态结构截然不同的还原特性,具备更强的氧化还原能力。同时,与浸渍法制备的Ce O_2/Ti O_2相比,Ce O_2@Ti O_2还具有更大的比表面积和更强的表面酸性,因而具有更加优异的脱硝性能。在175℃下NO转化率即达到80%以上,在200-400℃脱硝率稳定在96.0%-99.4%;同时,H_2O和SO_2的阶跃应答实验表明,Ce O_2@Ti O_2具有很强的抗水和抗SO_2毒化能力。  相似文献   

17.
本文以γ-Al_2O_3为载体,Cu(NO_3)_2·3H_2O和KNO_3为前驱体,利用等体积浸渍法制备不同K_2O负载量的CuO/Al_2O_3催化剂,预硫化处理后进行脱硝活性评价,考察了400℃下有和无SO_2时K_2O对铜铝催化剂脱硝活性的影响,并利用电感耦合等离子体质谱(ICP-MS)、X射线衍射(XRD)、原位红外(IS-FTIR)、NH_3程序升温脱附(NH_3-TPD)和H_2程序升温还原(H_2-TPR)研究了影响机制.结果表明,气氛中无SO_2时,K_2O促进催化剂中的CuSO_4向非水溶性铜转变,可能是CuSO_4被NH_3还原为Cu_3N,该反应消耗了用于选择性催化还原氮氧化物(SCR)反应的NH_3,同时导致催化剂的酸性降低,两者的共同作用导致催化剂的脱硝活性降低.气氛中有SO_2时,CuSO_4向非水溶性铜的转变得到了削弱,SO_4~(2-)对催化剂酸性的增强作用、前期证明的SO_2与NH_3的竞争吸附以及K_2O对酸性减弱作用的相对大小决定SO_2如何影响碱金属中毒催化剂的脱硝.催化剂中无K_2O时,SO_2抑制脱硝;K/Cu比为0.13时,SO_2不影响脱硝;继续提高K/Cu比,SO_2促进脱硝(即SO_2缓解催化剂的碱金属中毒).  相似文献   

18.
张贺  邹永刚  彭悦 《催化学报》2017,38(1):160-167
由发电厂等固定源和柴油机等移动源排放的一氧化氮(NO)造成的环境污染问题日益严重.随着严苛的排放法规出台,NO排放控制技术受到越来越多关注.NH3选择性催化还原(SCR)技术是目前去除NO应用最为广泛的方法之一.商业催化剂V2O5-WO3/TiO2在300–400℃温度窗口内显示出优越的NO去除效率,但仍存在一些问题,如钒氧化物的毒性以及在高温时形成N2O和SO3.因此,开发出低钒或无钒的新型催化剂是解决上述问题的关键.CeO2和含铈材料是重要的催化剂载体,具有良好的还原能力和氧存储功能,因而广泛应用于催化领域.CeO2添加到商用催化剂中不仅可以降低钒用量,而且可以提高催化剂抗碱金属中毒能力.CeO2-WO3催化剂在200℃以上时比商用催化剂具有更宽的温度窗口,并展现出较高的抗SO2和碱金属中毒能力.CeO2-ZrO2催化剂通过添加过渡金属元素可以提升其SCR活性,在较宽的温度窗口内具有较高的催化活性.废气中SO2可导致催化剂失活,在实际应用中催化剂硫中毒是较为常见的催化剂失效原因.通常情况下,锰基和铁基催化剂最容易硫中毒.然而CeO2催化剂在硫酸化处理后却展现出良好的SCR活性.催化剂硫酸化主要包括气相、液相和前驱体硫化三种方法.三种方法各有异同,但在催化剂表面形成的硫物种都是SO42–.硫酸化可以增强Ce基催化剂的SCR活性,但是对于硫化引起的催化剂表面酸性、氧化还原性以及NO吸附脱附性质的详细研究报道较少.本文通过液相法对CeO2-ZrO2(CeZr)催化剂进行了硫酸化.XRD结果表明,硫酸化并未对催化剂结晶结构产生影响.TPD和TPR结果表明,硫酸化后催化剂(S-CeZr)表面酸性增强,但抑制了其氧化性.通过原位红外光谱技术系统研究了催化剂在SCR反应过程中表面物种的变化,结果发现,CeZr和S-CeZr的催化机理相同,不同的SCR活性主要是由表面酸性和氧化性引起的.CeO2基催化剂在不同温度窗口遵循不同反应机理.CeZr催化剂具有较强的氧化还原性,使其对NO和NH3具有很强的氧化能力,所以其在低于200℃时具有较好的SCR活性.而S-CeZr催化剂具有更多的Br?nsted酸性位,导致NO不易吸附在催化剂表面,所以其在低温时SCR活性较差,但在高温时(>200℃)具有优良的SCR活性.通过SCR活性和反应机理研究,发现在高温时(>200℃),表面酸性尤其是强酸Br?nsted酸性位在SCR反应中起到决定性作用;而在低温时(<200℃),酸性位对NH3分子较强的键合作用导致NH3难以被氧化,所以较强的酸性位对SCR活性具有抑制作用,而氧化还原性在低温时对SCR反应起到主要作用.同时,在高温时,较高的氧化性可使NH3被O2直接氧化,导致N2选择性降低.  相似文献   

19.
Cu-Mn-Ce/γ-Al2O3汽车尾气净化催化材料的合成及性能的研究   总被引:2,自引:1,他引:1  
采用固定床反应装置,模拟汽车尾气的组成成分,以CO氧化和NH3选择还原NO为探针反应,研究了焙烧温度和焙烧时间等因素对复合金属氧化物催化材料Cu-Mn-Ce-O/γ-Al2O3的催化活性的影响,并考察了该催化剂的抗硫化中毒性能。在本研究条件下,焙烧温度在700℃左右,焙烧时间为2.5h时,催化剂对NO-CO体系中CO的氧化率在76%,以上,对NH3-NO体系中的NO的最佳催化还原率在80%以上。催化剂在3.O%S02/空气气氛中强制中毒后,其在NH3-NO气氛中的最佳反应温度.450℃,同样条件下未中毒催化剂的最佳反应温度为350℃左右,并且催化剂中毒后对NO—NH3的最大转化率没有下降,但是对NO-CO体系的反应活性明显下降,说明该催化剂具有良好的高温活性和抗硫中毒性能。  相似文献   

20.
研究了低温等离子体协助催化条件下甲烷选择性催化还原NO反应(SCR).反应气体经等离子体活化后,生成NO2,HCHO,CH3NO和CH3NO2等活性更高的中间产物.程序升温表面反应表明,这些中间产物可在等离子体后置催化装置上进一步反应,从而使NOx还原为N2.在考察的一系列催化剂(包括γ-Al2O3,Ag/γ-Al2O3,B2O3/γ-Al2O3,Ga2O3/γ-Al2O3,In2O3/γ-Al2O3等)中,B2O3/γ-Al2O3表现出最好的催化活性.当反应温度为300oC时,NOx转化率达到最高.与γ-Al2O3催化剂相比,在10wt%B2O3/γ-Al2O3催化剂上,300oC时,NOx转化为N2的转化率从33.4%提高至51.0%.催化剂的酸性对于经等离子体活化后的反应气体在催化剂上的SCR反应起到重要作用.同时,催化剂上吸附态NOx对于NOx的转化也起到一定作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号