首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
Vapor-liquid equilibria (VLE) have been measured for five 1-hexene/n-hexane/ionic liquid systems and 1-hexene/n-hexane/NMP (N-methyl-2-pyrrolidone) system with a headspace-gas chromatography (HSGC) apparatus at 333.15 K. The ionic liquids investigated were 1,3-dimethylimidazolium tetrafluoroborate [C2MIM]+[BF4], 1-butyl-3-methylimidazolium tetrafluoroborate [C4MIM]+[BF4], 1-methyl-3-octylimidazolium tetrafluoroborate [C8MIM]+[BF4], 1,3-dimethylimidazolium dicyanamide [C2MIM]+[N(CN)2] and 1-octylquinolinium bis(trifluoromethylsulfonyl)amide [C8Chin]+[BTA]. It was found that at low feeding concentration of 1-hexene and n-hexane, the separation ability of ionic liquids is in the order of [C2MIM]+[BF4] > [C4MIM]+[BF4] ≈ [C2MIM]+[N(CN)2] > [C8MIM]+[BF4] > [C8Chin]+[BTA], which is consistent with the priori prediction of the COSMO-RS (conductor-like screening model for real solvents) model. But at high feeding concentration, the separation ability of ionic liquids is in the order of [C2MIM]+[BF4] < [C4MIM]+[BF4] ≈ [C2MIM]+[N(CN)2] < [C8MIM]+[BF4] < [C8Chin]+[BTA]. The liquid demixing effect should be taken into account. The activity coefficients of 1-hexene and n-hexane at infinite dilution calculated with the COSMO-RS model were correlated using the NRTL, Wilson and UNIQUAC model. In this work the predictive results from the COSMO-RS model and UNIFAC model for the 1-hexene/n-hexane and 1-hexene/n-hexane/NMP systems were compared. The UNIFAC model is one of the most important academic contributions by Prof. Jürgen Gmehling.  相似文献   

2.
The basic study on the determination of tetrafluoroborate ion (BF4) by ion chromatography, and total boron by conversion of boric acid to BF4 followed by ion chromatography of BF4 has been carried out. The results of thermodynamic calculations for the system of boric acid (H3BO3)-F-H+ showed that the mole fraction of BF4 was higher than 99% at pH lower than 3.5 and 4.5 when the total free fluoride concentration (2[H2F2] + 2[HF2] + [HF] + [F]) was as high as 0.1 and 1.0 M, respectively. The fraction of BF4 increased with increasing total free fluoride concentration. BF4 fraction values were higher than 99% at pH 0.75 and at total free fluoride concentration of 0.05 M or higher. BF4 was hardly formed at pH > 7 even when the total free fluoride concentration was as high as 1.0 M. According to the experimental results, the fraction of BF4 at pH 0.7-0.8 was 51.2, 95.6 and 96.7% when the total fluoride concentration (2[H2F2] + 2[HF2] + [HF] + [F] + 3[BF3OH] + 4[BF4]) was 0.2, 1.0 and 3.3 M, respectively. The formation reaction of BF4 from boric acid reached an equilibrium state within 20 min regardless of reaction temperature, in the range of 20-50 °C, when the total boron and total fluoride concentrations were 66.7 mM and 1.0 M, respectively. Although BF4 was formed only under acidic conditions, BF4, once formed, was very stable under alkaline conditions at least for several hours. We have concluded that BF4 could be analyzed by ion chromatography using sodium hydroxide solution as an eluent because BF4 was stable under chromatographic conditions. BF4 solution prepared from boric acid could be used as a standard solution in the ion chromatographic analysis of BF4 instead of the sodium tetrafluoroborate (NaBF4) reagent available commercially, if a discrepancy of about 4-5% was allowed.  相似文献   

3.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

4.
The monocationic chloro complexes containing chelating 1,10-phenanthroline (phen) ligands [(arene)Ru(N∩N)Cl]+ (1: arene = C6H6, N∩N = phen; 2: arene = C6H6, N∩N = 5-NO2-phen; 3: arene = p-MeC6H4Pri, N∩N = phen; 4: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 5: arene = C6Me6, N∩N = phen; 6: arene = C6Me6, N∩N = 5-NO2-phen; 7: arene = C6Me6, N∩N = 5-NH2-phen) have been prepared and characterised as the chloride salts. Hydrolysis of these chloro complexes in aqueous solution gave, upon precipitation of silver chloride, the corresponding dicationic aqua complexes [(arene)Ru(N∩N)(OH2)]2+ (8: arene = C6H6, N∩N = phen; 9: arene = C6H6, N∩N = 5-NO2-phen; 10: arene = p-MeC6H4Pri, N∩N = phen; 11: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 12: arene = C6Me6, N∩N = phen; 13: arene = C6Me6, N∩N = 5-NO2-phen; 14: arene = C6Me6, N∩N = 5-NH2-phen), which have been isolated and characterised as the tetrafluoroborate salts. The catalytic potential of the aqua complexes 8-14 for transfer hydrogenation reactions in aqueous solution has been studied: complexes 12 and 14 catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide with turnover numbers around 200 (80 °C, 7 h). In the case of 12, it was possible to observe the postulated hydrido complex [(C6Me6)Ru(phen)H]+ (15) in the reaction with sodium borohydride; 15 has been characterised as the tetrafluoroborate salt, the isolated product [15]BF4, however, being impure. The molecular structures of [(C6Me6)Ru(phen)Cl]+ (1) and [(C6Me6)Ru(phen)(OH2)]2+ (12) have been determined by single-crystal X-ray structure analysis of [1]Cl and [12](BF4)2.  相似文献   

5.
Shin-ichi Naya 《Tetrahedron》2004,60(41):9139-9148
Ring transformation of 7,9-dimethylcyclohepta[b]pyrimido[5,4-d]furan- 8(7H),10(9H)-dionylium tetrafluoroborate 4+·BF4 to 7,9-dimethylcyclohepta[b]pyrimido[5,4-d]pyrrrole-8(7H),10(9H)-dionylium tetrafluoroborate 6a-d+·BF4 consists of the reaction of 4+·BF4 with amines and subsequent exchange of the counter-ion using aq. HBF4. Reactions of 4+·BF4 with aniline and 4-substituted anilines afforded the corresponding pyrrole derivatives 6a-c+·BF4 directly in good yields. On the other hand, reaction of 4+·BF4 with benzylamine gave the troponeimine intermediate 9, which was not converted to 6d+·BF4 and reverted to 4+·BF4 by adding HBF4; however, it was converted to 6d+·BF4 upon treatment with (COCl)2 or SOCl2, followed by exchange of the counter-ion. In a search for the characteristics of 9, inspection and comparison of the X-ray crystal analyses, NMR and UV-vis spectra, and CV measurement of 9 and N,N-disubstituted troponeimine derivatives 12 were carried out to suggest the remarkable structure of 12 having ionic C-O bonding between the imine-carbon atom and the oxygen atom of the barbituric acid moiety in the solid state. Thus, characteristics of 9 were ascribed to the sterically hindered and favorable conformation of N-protonated troponeimine intermediates. Furthermore, novel photo-induced oxidation reactions of a series of 4+·BF4, 5+·BF4, and 6a,e+·BF4 towards some amines under aerobic conditions were carried out to give the corresponding imines in 455-8362% yields [based on compounds 4+, 5+, and 6a,e+], suggesting the oxidation reaction occurs in an autorecycling process. Mechanistic aspects of the amine-oxidation reaction are also postulated.  相似文献   

6.
Fluorinated organodifluoroboranes RfBF2 are in general suitable reagents to transform XeF2 and RIF2 into the corresponding onium tetrafluoroborate salts [RfXe][BF4] and [R(Rf)I][BF4], respectively. (4-C5F4N)BF2 and trans-CF3CFCFBF2 which represent boranes of high acidity form no Xe-C onium salts in reactions with XeF2 but give the desired iodonium salts with RIF2 (R = C6F5, o-, m-, p-C6FH4). The reaction of (4-C5F4N)BF2 with XeF2 ends with a XeF2-borane adduct. C6F5Xe(4-C5F4N), the first Xe-(4-C5F4N) compound, was obtained when C6F5XeF was reacted with Cd(4-C5F4N)2. We describe the synthesis of (4-C5F4N)IF2 and reactions of (4-C5F4N)IF2 and C6F5IF2 with (4-C5F4N)BF2. Analogous to [(4-C5F4N)2I][BF4] and [C6F5(4-C5F4N)I][BF4] aryl(perfluoroalkenyl)iodonium salts [R(R′)I][BF4] were obtained from RIF2 (R = C6F5, o-, m-, p-C6FH4) and R′BF2 (R′ = trans-CF3CFCF, CF2CF). The gas phase fluoride affinities pF of selected fluoroorganodifluoroboranes RfBF2 and their hydrocarbon analogs are calculated (B3LYP/6-31+G*) and discussed with respect to their potential to introduce Rf-groups into hypervalent EF2 bonds. Four aspects which influence the transformation of hypervalent EF2 bonds (E = Xe, R′I) under the action of Lewis acidic reagents RAFn−1 (A = B, P; n = 3, 5) into the corresponding [RE][AFn+1] salts are presented and the important role of the acidity is emphasized. Fluoride affinities may help to plan the introduction of organo groups into EF2 moieties and to expand the types of acidic reagents. Thus C6H5PF4 with a pF value comparable to that of RfBF2 compounds is able to introduce the C6H5 group into RIF2 (R = C6F5, p-C6FH4).  相似文献   

7.
The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T = 182.33 K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures for (H2S + C2H6), (820.1 ± 2.4) J · mol−1 for (H2S + C3H8), and (818.6 ± 0.9) J · mol−1 for (H2S + n-C4H10). The binary mixtures of H2S with ethane and with propane exhibit azeotropes, but that with n-butane does not.  相似文献   

8.
The potential of near infrared (NIR) spectroscopy in characterization of organically modified clay minerals is introduced. Selected organo-clays, possibly perspective fillers in clay polymer nanocomposites, were prepared from Na-montmorillonite and different surfactants containing octylammonium chain(s), hexadecylammonium chain(s) or a benzene ring with or without a reactive double bond. Based on the stretching (ν) and bending (δ) vibrations observed in the middle IR (MIR) region, the first overtone (2νXH) and combination (ν + δ)XH modes of XH groups (X = O, C, N) are identified. The effect of larger alkylammonium cations on the vibrations of Si-O and OH bonds in montmorillonite layers is observed. The changes in the intensity of the (ν + δ)H2O band near 5250 cm−1 allows for comparison of the amount of water adsorbed on the montmorillonite surface. The water content decreases with the size of the organic cation reflecting increasing hydrophobicity of the montmorillonite surface. The NIR region shows the 2νCH3 and 2νCH2 bands in the 5900-5500 cm−1 region, an upward shift is observed for the complex band due to 2νCH(Ar) of aromatic benzene ring. The NIR spectra are extremely useful in identification of NH2+, NH+ and vinyl groups, which are difficult to recognize in the MIR spectra of organo-clays due to overlapping with other absorption bands. The intense bands corresponding to overtones and combination vibrations of NH3+ and NH2+ groups are found in the 6600-6050 cm−1 and 5000-4600 cm−1 regions, the (ν + δ)NH+ is unambiguously identified near 4750 cm−1. The characteristic band assigned to 2νCH2 in H2CC is detected near 6130 cm−1.  相似文献   

9.
Alkyl and dialkylammonium tetrafluoroborate promoted cis-trans isomerization of 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane (1) in DMSO-d6 were studied. The isomerization equilibrium constant K are within the range of 3.74-3.30 from 22 to 47 °C. Thermodynamic parameters of ΔH° and ΔS° for the isomerization were −0.95 kcal/mol and −0.59 cal/mol-K respectively. The isomerization rate is first order in [cis-1] and second order in [RnNH4−nBF4]. Both components of RnNH4−n+ and BF4 are essential for the catalytic cis-trans isomerization. The catalytic strength follows the decreasing order of +H3N(CH2)6NH3+>n-C8H17NH3+>n-C16H33NH3+>Me3CNH3+>PhCH2NH3+>Et2NH2+?Ph2CHNH3+, Et3NH+. Inversion region was observed in the plot of ln(kf/T) versus (1/T) with the ceiling located at around 38 °C. The positive activation enthalpy of 9 kcal/mol was estimated at 22-32 °C. The activation enthalpy turns to be slightly negative at T>38 °C.  相似文献   

10.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

11.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

12.
Using an on-line solution-reaction isoperibol calorimeter, the standard molar enthalpies of reaction for the general thermochemical reaction: LnCl3·6H2O(s) + 2C9H7NO(s) + CH3COONa(s) = Ln(C9H6NO)2(C2H3O2)(s) + NaCl(s) + 2HCl(g) + 6H2O(l) (Ln: Nd, Sm), were determined at T=298.15 K, as  kJ mol−l, respectively. From the mentioned standard molar enthalpies of reaction and other auxiliary thermodynamic quantities, the standard molar enthalpies of formation of Ln(C9H6NO)2(C2H3O2)(s) (Ln: Nd, Sm), at T=298.15 K, have been derived to be: −(1494.7±3.3) and −(1501.5±3.4) kJ mol−l, respectively.  相似文献   

13.
Density functional theory is employed to study the interaction energies between dibenzothiophene (DBT) and 1-alkyl-3-methylimidazolium tetrafluoroborate ([C n mim]+[BF4]?). The structures of DBT, 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim]+[BF4]?), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]+[BF4]?), 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim]+[BF4]?), 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]+[BF4]?), [C2mim]+[BF4]?–DBT, [C4mim]+[BF4]?–DBT, [C6mim]+[BF4]?–DBT and [C8mim]+[BF4]?–DBT systems are optimized systematically at the B3LYP/6-31G(d,p) level, and the most stable geometries are obtained by NBO and AIM analyses. The results indicate that DBT and imidazolium rings of ionic liquids are parallel to each other. It is found that the [BF4]? anion prefers to be located close to a C1–H9 proton ring in the vicinity of the imidazolium ring and the most stable gas-phase structure of [C n mim]+[BF4]? has four hydrogen bonds between [C n mim]+ and [BF4]?. There are hydrogen bonding interactions, π–π and C–H–π interactions between [C8mim]+[BF4]? and DBT, which is confirmed by NBO and AIM analyses. The calculated interaction energies for the studied ionic liquids can be used to interpret a better extracting ability of [C8mim]+[BF4]? to remove DBT, due to stronger interactions between [C8mim]+[BF4]? and DBT, in agreement with the experimental results of dibenzothiophene extraction by [C n mim]+[BF4]?.  相似文献   

14.
New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions   总被引:1,自引:0,他引:1  
New hydrophobic ionic liquids, 1-ethyl-3-methylimidazolium (EMI+) perfluoroalkyltrifluoroborate ([RfBF3]) (Rf=C2F5,n-C3F7, and n-C4F9) were prepared in high yield and purity by facile neutralization of 1-ethyl-3-methylimidazolium (EMI+) methylcarbonate (MeOCO2) with aqueous Hsolv.[RfBF3]solv. solutions. All the salts prepared were characterized by , , NMR, MS and elemental analysis, and thermal and electrochemical properties of these salts have been measured. [EMI][C2F5BF3] melted at lower temperature (−1 °C) than [EMI][BF4] (13 °C), resulting in higher conductivity at low temperature. Its application to double-layer capacitors (DLCs) was examined.  相似文献   

15.
Several imidazolium-based ionic liquids (ILs) with varying cation alkyl chain length (C4–C10) and anion type (tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]) and bis(trifluoromethylsulfonyl)imide ([Tf2N])) were used as reaction media in the microwave polymerization of methacrylate-based stationary phases. Scanning electron micrographs and backpressures of poly(butyl methacrylate-ethylene dimethacrylate) (poly(BMA-EDMA)) monoliths synthesized in the presence of these ionic liquids demonstrated that porosity and permeability decreased when cation alkyl chain length and anion hydrophobicity were increased. Performance of these monoliths was assessed for their ability to separate parabens by capillary electrochromatography (CEC). Intra-batch precision (n = 3 columns) for retention time and peak area ranged was 0.80–1.13% and 3.71–4.58%, respectively. In addition, a good repeatability of RSDRetention time = <0.30% and ∼1.0%, RSDPeak area = <1.30% and <4.3%, and RSDEfficiency = <0.6% and <11.5% for intra-day and inter-day, respectively exemplify monolith performance reliability for poly(BMA-EDMA) fabricated using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) porogen. This monolith was also tested for its potential in nanoLC to separate protein digests in gradient mode. ILs as porogens also fabricated different alkyl methacrylate (AMA) (C4–C18) monoliths. Furthermore, employing binary IL porogen mixture such as 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) successfully decreased the denseness of the monolith, than when using [C4mim][Tf2N] IL alone, enabling a chromatographic run to be performed with 1:1 ratio produced baseline separation for the analytes. The combination of ILs and microwave irradiation made polymer synthesis very fast (∼10 min), entirely green (organic solvent-free) and energy saving process.  相似文献   

16.
The hydridic reactivity of the complex W(CO)(H)(NO)(PMe3)3 (1) was investigated applying a variety of protic donors. Formation of organyloxide complexes W(CO)(NO)(PMe3)3(OR) (R = C6H5 (2), 3,4,5-Me3C6H2 (3), CF3CH2 (4), C6H5CH2 (5), Me (6) and iPr (7)) and H2 evolution was observed. The reactions of 1 accelerated with increasing acidity of the protic donor: Me2CHOH (pKa = 17) < MeOH (pKa = 15.5) < C6H5CH2OH (pKa = 15) < CF3CH2OH (pKa = 12.4) < C6H2Me3OH (pKa = 10.6) < C6H5OH (pKa = 10).Regioselective hydrogen bonding of 1 was probed with two of the protic donors furnishing equilibrium formation of the dihydrogen bonded complexes ROH···HW(CO)(NO)(PMe3)3 (R = 3,4,5-Me3C6H2,3a and iPr, 7a) and the ONO hydrogen bonded species ROH···ONW(CO)(H)(PMe3)3 (R = C6H2Me3,3b and iPr, 7b) which were studied in hexane and d8-toluene solutions using variable temperature IR and NMR spectroscopy. Quantitative IR experiments at low temperatures using 3,4,5-trimethylphenol (TMP) confirmed the two types of competitive equilibria: dihydrogen bonding to give 3aH1 = −5.8 ± 0.4 kcal/mol and ΔS1 = −15.3 ± 1.4 e.u.) and hydrogen bonding to give 3b (ΔH2 = −2.8 ± 0.1 kcal/mol and ΔS2 = −5.8 ± 0.3 e.u.). Additional data for the hydrogen bonded complexes 3a,b and 7a,b were determined via NMR titrations in d8-toluene from the equilibrium constants Kδ) and KR1) measuring either changes in the chemical shifts of HW(Δδ) or the excess relaxation rates of HWR1) (3a,b: ΔHδ) = −0.8 ± 0.1 kcal/mol; ΔSδ) = −1.4 ± 0.3 e.u. and ΔHR1) = −5.8 ± 0.4 kcal/mol; ΔSR1) = −22.9 ± 1.9 e.u) (7a,b: ΔHδ) = −2.3 ± 0.2 kcal/mol; ΔSδ) = −11.7 ± 0.9 e.u. and ΔHR1) = −2.9 ± 0.2 kcal/mol; ΔSR1) = −14.6 ± 1.0 e.u). Dihydrogen bonding distances of 1.9 Å and 2.1 Å were derived for 3a and 7a from the NMR excess relaxation rate measurements of HW in d8-toluene. An X-ray diffraction study was carried out on compound 2.  相似文献   

17.
The standard Gibbs free energy of formation of MoO2−δ, ΔfG°(MoO2−δ), has been measured over a wide temperature range (925 to 1925) K using an advanced version of bi-electrolyte solid-state electrochemical cell incorporating a buffer electrode:
Pt∣Mo + MoO2−δ∥(Y2O3)ThO2∥(CaO)ZrO2∥O2(0.1 MPa)∣Pt  相似文献   

18.
The reaction of Cr(η6-CH3C6H5)2 with 1-benzoyl-6-hydroxy-6-phenyl fulvene, dbcpH, and with pentakis(methoxycarbonyl)cyclopentadiene, pcmcpH, proceeds with evolution of dihydrogen and the formation of the ionic derivatives [Cr(η6-CH3C6H5)2][X] ([X] = 1,2-dibenzoylcyclopentadienyl, [dbcp], pentakis(methoxycarbonyl)cyclopentadienyl, [pcmcp]), which have been characterized by IR and EPR spectroscopies, X-ray diffraction and electrochemical techniques. The sterically demanding anions do not affect the structural and electronic properties of the cations in solution but strongly influence crystal packing. In fact, a rare cis-eclipsed conformation of the toluene rings is found for [Cr(η6-CH3C6H5)2][dbcp] · THF, whereas two independent complexes are observed in the unit cell of [Cr(η6-CH3C6H5)2][pcmcp], one with toluene rings in a cis-eclipsed conformation and the other in a staggered conformation (projections of methyl groups form an angle of 151°).  相似文献   

19.
The exchange of the Li+(1), Na+(2) and K+(3) alkaline cations in the layered HNi(PO4)·H2O was carried out starting from a methanolic solution containing the Li(OH)·H2O hydroxide for (1) and the M(OH) (M=Na and K) hydroxides together with the (C6H13NH2)0.75HNiPO4·H2O phases for (2) and (3). The compounds are stable until, approximately, 280 °C for (1) and 400 °C for phases (2) and (3), respectively. The IR spectra show the bands belonging to the water molecule and the (PO4)3− oxoanion. The diffuse reflectance spectra indicate the existence of Ni(II), d8, cations in slightly distorted octahedral geometry. The calculated Dq and Racah (B and C) parameters have a mean value of Dq=765, B=905 and , respectively, in accordance with the values obtained habitually for this octahedral Ni(II) cation. The study of the exchange process performed by X-ray powder diffraction indicates that the exchange of the Li+ cation in the lamellar HNi(PO4)·H2O phase is the minor rapid reaction, whereas the exchange of the Na+ and K+ cations needs the presence of the intermediate (C6H13NH2)0.75HNiPO4·H2O intercalate in order to obtain the required product with the sodium and potassium ions. The Scanning electronic microscopy (SEM) images show a mean size of particle of 5 μm. The Li+ exchanged compound exhibits small ionic conductivity (Ω cm−1 is in the 10−8-10−9 range) probably restrained by the methanol solvent. Magnetic measurements carried out from 5 K to room temperature indicate antiferromagnetic coupling as the major interaction in the three phases. Notwithstanding the Li and K phases show a weak ferromagnetism at low temperatures.  相似文献   

20.
The effect of ionic liquids on the formation of a partial positive charge on the surface of silver nanoparticle and its subsequent effect on facilitated olefin transport were investigated. Three different ionic liquids of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF4), 1-butyl-3-methylimidazolium triflate (BMIM+Tf), and 1-butyl-3-methylimidazolium nitrate (BMIM+NO3) were employed to control the positive charge density of the surface of silver nanoparticles. The positive charge density of the silver nanoparticles, as characterized by the binding energy of the silver atom, was in the following order: BMIM+BF4/Ag ? BMIM+Tf/Ag > BMIM+NO3/Ag. This order was consistent with the tendency of ionic liquids to form free ions. The best separation performance for the propylene/propane mixtures was a mixed gas selectivity of 17 and a permeance of 7 GPU through a composite membrane consisting of BMIM+BF4/Ag. A better separation performance for olefin/paraffin mixtures was observed with a higher positive charge density of the silver nanoparticles. It was therefore concluded that facilitated olefin transport was a direct consequence of the surface positive charge of the silver nanoparticles induced by ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号