首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Summary: We applied scanning force microscopy to study, in real time, the mobility and reorganisation of single poly(2-vinylpyridine) molecules that were adsorbed on mica and exposed to vapours of ethanol or water. The macromolecules adopted a compact globular conformation in ethanol-saturated vapour and extended to a surface-bound two-dimensional coil in water-saturated vapour. Hence, reversible coil-to-globule conformational transitions of flexible polymer chains were directly visualized with unique molecular resolution.

Left: individual P2VP molecules on mica compacted by exposure to ethanol vapour, right: the same macromolecules extended in water vapour.  相似文献   


2.
Summary: Comb‐like macromolecules were adsorbed on mica and imaged by scanning force microscopy in real time as they underwent a transition from an extended worm‐like conformation to globuli and vice versa. The conformational transition was effected by coadsorption of ethanol and water molecules. Coadsorption of the small molecules allowed manipulation of the adherence and spreading of the macromolecules, thus effecting the reptation like stretching and collapse of the single molecules.

SFM images of three individual PMA‐g‐PnBuA brush molecules on mica 27 min (left, first collapse cycle) and 18 min (right, second collapse cycle) after injection of ethanol into the sample space.  相似文献   


3.
Scaling exponents ν, that describe the correlation between mean square end‐to‐end distances and contour lengths of macromolecules, were determined by statistical analysis of scanning force micrographs of single linear poly(2‐vinylpyridine) and brush‐like poly(butanoate‐ethyl methacrylate)‐graft‐poly(n‐butyl acrylate) macromolecules adsorbed on mica. Using an atmosphere‐controlled scanning force microscope, single adsorbed molecules were collapsed and re‐expanded upon being exposed to alcohol and water vapor, respectively. This manipulated collapse‐unfolding was used to equilibrate the molecular structure/conformation. The in situ and real‐time scanning force microscopy analysis allows the scientist to quantitatively characterize end‐to‐end distances and contour lengths of the molecules directly on the image and to observe differences in the spreading dynamics for the two types of macromolecules. A distinct difference has been observed between the expanded two‐dimensional (2D) conformations of linear and brush‐like polymer chains. Whereas a scaling exponent ν of 0.73 was found for the expanded 2D conformation of the linear molecules, a ν‐value of 0.53 was determined for the expanded 2D conformation of the seemingly stiffer brush‐like molecules. A theoretical explanation of the differences between the 2D conformations of brush‐like and linear macromolecules is proposed here. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2368–2379, 2007  相似文献   

4.
Scanning force microscopy was applied to visualise the motion of single poly(butanoate-ethylmethacrylate)-graft-poly(n-butyl acrylate) molecules on silicon and SrTiO(3) substrates. Macromolecular mobility was induced by cyclic exposure of the wafers with the adsorbed brush-like macromolecules to water and alcohol vapours. Exposure to saturated alcohol vapour induced collapse of the adsorbed individual polymer chains while exposure to saturated water vapour promoted their extension. The characteristic times of both conformational changes were long enough that it was possible to visualise step-by-step the morphology transformation in situ by means of an environment-controlled scanning force microscope. Several successive collapse-decollapse cycles were recorded, and small diffusive shifts of the macromolecular position on the substrate were detected after each cycle. Manipulating and visualising single polymer molecules in situ and real time on a silicon substrate opens up new possibilities for the controlled structure formation in ultrathin polymer films. As shown on the sample of a faceted SrTiO(3) wafer, upon extension the brush-like molecules can crawl or extend along nanoscopic surface structures. Silicon can be structured both topographically and chemically at dimensions comparable to those of single polymer molecules with a variety of fabrication techniques ranging from well established conventional silicon micro- nano- machining to new tools constantly developed as dip-pen and nanoimprint lithography.  相似文献   

5.
Single flexible polyelectrolyte molecules of poly(2-vinylpyridine) undergo conformational transition from a stretched wormlike coil to a necklace-like globule, and to a compact globule depending on pH and ionic strength in aqueous solution in good agreement with recent theoretical reports. AFM investigations allow the visualization of details of the chain conformation on mica and the extraction of quantitative statistics of molecular dimensions.  相似文献   

6.
Specially pretreated chitosan macromolecules possess limited solubility in supercritical carbon dioxide. When deposited on mica substrate from such solutions they adopt somewhat extended conformation. The adsorbed macromolecules become mobile on the interface when exposed to water vapour as revealed by environmental scanning force microscopy. During the exposure in the presence of coadsorbed water layer the chitosan strands demonstrate slight tendency to adopt more compact but still two-dimensional conformation on the substrate.  相似文献   

7.
In the present study, the structure and morphology of single sodium poly(styrenesulfonate) (PSS) molecules adsorbed to mica surface from the natural aqueous solution is investigated using atomic force microscopy technique. Results show that single PSS molecules are observed which show a morphology of wormlike coils. Meanwhile, single sodium poly(styrenesulfonate) (PSS)/Hexadecyltrimethylammonium bromide (CTAB) complexes deposited on mica from the air–water interface are also observed. However, the PSS/CTA+ complexes show different conformations by appearing in the morphology of circular patches. Experimental data are in fair agreement with the theoretical analysis.  相似文献   

8.
Molecular brushes (densely grafted polymers or bottle-brush macromolecules) were synthesized by the "grafting onto" method via combination of atom transfer radical polymerization (ATRP) and "click" reactions. Linear poly(2-hydroxyethyl methacrylate) (PHEMA) polymers were synthesized first by ATRP. After esterification reactions between pentynoic acid and the hydroxyl side groups, polymeric backbones with alkynyl side groups on essentially every monomer unit (PHEMA-alkyne) were obtained. Five kinds of azido-terminated polymeric side chains (SCs) with different chemical compositions and molecular weights were used, including poly(ethylene glycol)-N3 (PEO-N3), polystyrene-N3, poly(n-butyl acrylate)-N3, and poly(n-butyl acrylate)-b-polystyrene-N3. All click coupling reactions between alkyne-containing polymeric backbones (PHEMA-alkyne) and azido-terminated polymeric SCs were completed within 3 h. The grafting density of the obtained molecular brushes was affected by several factors, including the molecular weights and the chemical structures of the linear SCs, as well as the initial molar ratio of linear chains to alkynyl groups. When linear polymers with "thinner" structure and lower molecular weight, e.g., PEO-N3 with Mn = 775 g/mol, were reacted with PHEMA-alkyne (degree of polymerization = 210) at a high molar ratio of linear chains to alkynyl groups in the backbone, the brush copolymers with the highest grafting density were obtained (Y(grafting) = 88%). This result indicates that the average number of SCs was ca. 186 per brush molecule and the average molecular weight of the brush molecules was ca. 190 kg/mol.  相似文献   

9.
Macroporous poly(methyl methacrylate) networks with varying cross-linking density and porosity were coated with plasma-polymerised poly(2-hydroxyethyl acrylate) grafted on the pores surface. The result is a mechanically reinforced hydrogel (PMMA-gr-plPHEA) whose properties are characterised in this work using several experimental techniques. Bulk PMMA and bulk PHEA were also characterised as reference materials. The diffusion and water sorption properties of these hydrogels were studied through equilibrium water sorption isotherms and desorption starting with the sample equilibrated in immersion in liquid water or in a vapour atmosphere. Glass transition, dynamic-mechanical relaxation and thermal degradation were characterised in order to study the interphase interaction in these biphasic systems. All these experimental techniques suggested that plasma-polymerised PHEA is more homogeneously interpenetrated with highly cross-linked macroporous PMMA than if the porous substrate is a loosely cross-linked polymer network.  相似文献   

10.
Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in the parallel-plate channel setup. The technique was calibrated by performing model measurements of streaming potential by using monodisperse latex particles. Two types of polyelectrolytes were used in our studies: poly(allylamine) hydrochloride (PAH), of a cationic type, and poly(sodium 4-styrenesulfonate) (PSS) of an anionic type, both having molecular weight of 70,000. The bulk characteristics of polymers were determined by measuring the specific density, diffusion coefficient for various ionic strengths, and zeta potential. These measurements as well as molecular dynamic simulations of chain shape and configurations suggested that the molecules assume an extended, wormlike shape in the bulk. Accordingly, the diffusion coefficient was interpreted in terms of a simple hydrodynamic model pertinent to flexible rods. These data allowed a proper interpretation of polyelectrolyte multilayer adsorption from NaCl solutions of various concentrations or from 10(-3) M Tris buffer. After completing a bilayer, periodic variations in the apparent zeta potential between positive and negative values were observed for multilayers terminated by PAH and PSS, respectively. These limiting zeta potential values correlated quite well with the zeta potential of the polymers in the bulk. The stability of polyelectrolyte films against prolonged washing (reaching 26 h) also was determined using the streaming potential method. It was demonstrated that the PSS layer was considerably more resistant to washing, compared to the PAH layer. It was concluded that the experimental data were consistent with the model postulating particle-like adsorption of polyelectrolytes with little chain interpenetration. It also was concluded that due to high sensitivity, the electrokinetic method applied can be effectively used for quantitative studies of polyelectrolyte adsorption, desorption, and reconformation.  相似文献   

11.
We show that hydrophobic flexible polyelectrolyte molecules of poly(2-vinylpyridine) and poly(methacryloyloxyethyl dimethylbenzylammonium chloride) are trapped and frozen due to adsorption on the mica surface, and the observed AFM single molecule structures reflect the molecular conformation in solution. An increase of the ionic strength of the solution induces the cascade of abrupt conformational transitions due to the intrachain segregation from elongated coil to compact globule conformations through intermediate pearl necklace-globule conformations with different amounts of beads per chain. The length of the necklaces and the number of beads decrease, while the diameter of beads increases with the increase of ionic strength. Coexistence at the same time of extended coils, necklaces with different amounts of beads, and compact globules indicates the cascade of the first-order-type phase transitions.  相似文献   

12.
In this article, we compare structures of protonated poly(2-vinylpyridine) globules (2D compact coils on the surface) adsorbed on the mica surface from aqueous solution when the shrinking is brought about either by discharging the molecules at an elevated pH or by adding monovalent and polyvalent salts. We study the structure of the PE coils using in situ atomic force microscopy experiments in aqueous solutions in a liquid cell. The abrupt coil-to-globule transition caused by pH changes and the discharge of polymer chains resulted in compact globules. If the pH corresponding to extended coil conformation remains unchanged, the coil shrinks due to the added salt. The size of the globule in the latter case corresponds to the unperturbed dimension of the polymer coil. There is no essential difference in the dimensions of the globules as obtained in the presence of monovalent and multivalent counterions for the studied ionic strength. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1623–1627, 2010  相似文献   

13.
The change in semiconductive properties of β-apo-8′-carotenal, astacene and methyl bixin on adsorption of various vapours on the crystallite surfaces has been studied at a constant sample temperature. The adsorption of vapours enhances the semiconductivity of the polyenes appreciably. This enhancement depends on the chemical nature and also on the pressure of the adsorbed vapour. The adsorption and desorption kinetics follow the modified Roginsky-Zeldovich relation. A two stage desorption process, the first stage of which gives a Lennard-Jones potential energy curve and is followed by a rate-determining transition over a potential energy barrier to the second stage of adsorption forming weakly bound complexes between the vapour molecules and the polyene crystallites, can explain satisfactorily the experimentally observed kinetic data.  相似文献   

14.
Arrays of graphitic carbon nanoclusters were obtained by pyrolysis of nanoscale phase-separated block copolymers of polyacrylonitrile and poly(n-butyl acrylate). Upon heating in an inert atmosphere to temperatures ranging from approximately 400 to 1200 degrees C, polyacrylonitrile domains were converted into carbon nanoclusters, maintaining the overall shape and spacing, whereas the poly(n-butyl acrylate) phase was sacrificed. Preservation of the original nanoscale morphology of a block copolymer was possible only if pyrolysis was preceded by oxidation at temperatures of approximately 230 degrees C, in analogy with thermal stabilization of polyacrylonitrile precursor in the process used in the manufacturing of carbon fibers. Preorganization of the carbon precursor through self-assembly in block copolymers of polyacrylonitrile appears to be an attractive and robust strategy for templated synthesis of well-defined nanostructured carbon materials.  相似文献   

15.
An atomic force microscope was used to observe the adsorption of phospholipid molecules(phospha-tidylcholine, PC) on the mica substrate.The film-formation by PC molecules adsorption spontaneously on the specific substrate has been proved. It is revealed that the evident differences of morphology exist among different sampler with different concentrations of PC/decane solutions. different adsorption times, etc.The effect of tip-induced change in size of domains formed by adsorption of PC molecules on the substrate during the AFM scanning was observed.  相似文献   

16.
The diblock copolymer poly(methyl methacrylate)‐b‐poly(sodium sulfonated glycidyl methacrylate) (PMMA‐b‐PSGMA) was end‐attached by its hydrophobic block (PMMA) onto mica hydrophobized by a stearic trimethylammonium iodide (STAI) layer, to form a polyelectrolyte brush immersed in water. With a surface force balance (SFB), we extended earlier measurements between two such brush layers for the case of normal and shear forces at different shear rates, surface separation, and compressions between one mica surface coated with STAI or a STAI‐diblock layer against a bare mica surface. After coating one of the surfaces with STAI, a long range attraction that results in a jump into an adhesive flat contact between the hydrophobic and hydrophilic surfaces was observed. A very different behavior was seen after forming the polyelectrolyte brush on the STAI‐coated surface. The long range attraction was replaced by repulsion, accompanied by very low friction during shear (ca. three orders of magnitude lower than with adsorbed polyelectrolytes). On further compression, a weak attraction to the adhesive contact was observed. From the final surface–surface contact separation, we deduce that most of the polyelectrolyte diblock brush layer was squeezed out from the gap, leaving the STAI layer and a small amount of the polymer attached to the surface. Stick‐sliding behavior was seen while applying shear, suggesting a dissipation mechanism caused by the trapped polyelectrolyte. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 193–204, 2005  相似文献   

17.
Hydration force between mica surfaces in aqueous KCl electrolyte solution   总被引:3,自引:0,他引:3  
Liquid-vapor molecular dynamics simulations are performed to study the interaction forces between two mica surfaces in an aqueous KCl electrolyte solution. Strong repulsive hydration force is obtained within a distance of ~2 nm between the two mica surfaces, which cannot be explained by the continuum theory of double-layer repulsion. We find that this short-range repulsive hydration force is much stronger than the double-layer force between mica surfaces. Whereas the simulation system is much smaller than the surface force measurement system, fundamental mechanisms of repulsive hydration force are revealed. In particular, important features of the step-like force oscillatory behavior during normal compression and force hysteresis during retraction are observed. Detailed analysis of the ionic density distributions shows that the "forced adsorption" of diffusive K(+) ions onto mica surfaces during compression and the subsequent "slow desorption" of the absorbed K(+) ions from mica surfaces upon retraction are responsible for the hysteresis phenomenon. From a mechanics point of view, we attribute the load bearing capacity of the dense electrolyte to the very hard hydration shells of K(+) metal ions under confinement. We find that the hydrated K(+) ions and Cl(-) co-ions remain very diffusive in the aqueous film. Water molecules in the hydration layer are also very fluidic, in the sense that the diffusion constant of water molecules is less than its bulk value by at most 3 orders of magnitude under the extreme confinement.  相似文献   

18.
Adsorption of DNA molecules on mica, a highly negatively charged surface, mediated by divalent or trivalent cations is considered. By analyzing atomic force microscope (AFM) images of DNA molecules adsorbed on mica, phase diagrams of DNA molecules interacting with a mica surface are established in terms of concentrations of monovalent salt (NaCl) and divalent (MgCl2) or multivalent (spermidine, cobalt hexamine) salts. These diagrams show two transitions between nonadsorption and adsorption. The first one arises when the concentration of multivalent counterions is larger than a limit value, which is not sensitive to the monovalent salt concentration. The second transition is due to the binding competition between monovalent and multivalent counterions. In addition, we develop a model of polyelectrolyte adsorption on like-charged surfaces with multivalent counterions. This model shows that the correlations of the multivalent counterions at the interface between DNA and mica play a critical role. Furthermore, it appears that DNA adsorption takes place when the energy gain in counterion correlations overcomes an energy barrier. This barrier is induced by the entropy loss in confining DNA in a thin adsorbed layer, the entropy loss in the interpenetration of the clouds of mica and DNA counterions, and the electrostatic repulsion between DNA and mica. The analysis of the experimental results provides an estimation of this energy barrier. We then discuss some important issues, including DNA adsorption under physiological conditions.  相似文献   

19.
A transition from spherical to wormlike micelles of a poly(ethylene oxide) 20- block-poly(propylene oxide) 70- block-poly(ethylene oxide) 20 triblock copolymer Pluronic P123 induced by solubilization of a tetrafuctional monomer, Pentaerythritol tetraacrylate (PETA), in aqueous media has been studied. The wormlike micelles shape was locked by UV cross-linking of PETA within the micelles resulting in stabilized polymeric micelles (SPMs). The stability of SPMs in a good solvent for both polyether blocks like THF, and upon dilution below the critical micelle concentration (CMC) of P123 in water was confirmed by dynamic light scattering (DLS) and scanning force microscopy (SFM). Formation of cadmium sulfide (CdS) nanoparticles within the wormlike SPMs was carried out via the reduction of Cd (2+) with NaS and analyzed by transmission electron microscopy (TEM) and UV-vis absorption measurements. A stable water-dispersible hybrid system consisting of CdS quantum dots embedded into the wormlike SPMs was obtained.  相似文献   

20.
采用分步悬浮聚合法制备了由大孔聚二乙烯基苯和聚丙烯酸甲酯组成的聚合物互贯网络(Interpenetrating polymer networks IPN),经过乙二胺氨解,得到由疏水性的大孔聚二乙烯基苯和亲水性的聚丙烯酰乙二胺组成的聚合物互贯网络(polydivinylbenzene/polyacrylethylenediamine IPN即PDVB/PAEM IPN),测定了合成的IPN的物理和化学结构,研究了PDVB/PAEM IPN对pH 6.5的水溶液中双酚A (Bisphenol A即BPA)的吸附性能.结果表明,合成的PDVB/PAEM IPN是含有氨基和酰胺基的多孔性IPN;树脂对水溶液申双酚A的等量吸附焓在20kJ/mol~50kJ/mol之间;动态吸附及脱附实验表明,湿态PDVB/PAEM IPN树脂对水溶液中双酚A的饱和吸附量达到约30mg/mL.树脂可以通过乙醇再生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号