首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a new tetralactam macrocycle and the simultaneous formation of catenanes and larger octalactam macrocycles is reported. These species bear 2,2'-biquinoline moieties suitably positioned to bind a metal center at the outer periphery of the macrocycles. (1)H NMR chemical shifts permit the unambiguous distinction of transoid and cisoid conformations of the biquinoline moiety, thereby allowing an unequivocal identification of the catenane and octalactam structures, despite the fact that both have the same elemental composition and bear identical structural subunits. With the aid of an anion template effect, rotaxanes can be prepared from the smaller tetralactam macrocycle. These reveal significantly altered requirements in terms of the stopper size as compared to previously reported tetralactam wheels. Several copper(I)-mediated dimers and a (bpy)(2)Ru(II) complex (bpy=2,2'-bipyridine) have been synthesized from the tetralactam macrocycle and the rotaxanes. The anion binding abilities of the tetralactam macrocycle and its (bpy)(2)Ru(II) complex in DMSO have been compared by (1)H NMR titration experiments, which revealed significantly enhanced binding by the metal complex. Mass spectrometry has been used to study the potential formation of larger assemblies of copper(I) and the catenane built-up from two tetralactam macrocycles. Indeed, a 2:2 complex was identified. In contrast, the octalactam macrocycle of the same elemental composition yields only 1:1 complexes, with the Cu(I) ion connecting its two biquinoline moieties in the center of a figure-eight-shaped molecule. Molecular modeling studies support the structural assignments made.  相似文献   

2.
This combined experimental (STM, XPS) and molecular dynamics simulation study highlights the complex and subtle interplay of solvent effects and surface interactions on the 2-D self-assembly pattern of a Schiff-base macrocycle containing catechol moieties at the liquid-solid interface. STM imaging reveals a hexagonal ordering of the macrocycles at the n-tetradecane/Au(111) interface, compatible with a desorption of the lateral chains of the macrocycle. Interestingly, all the triangular-shaped macrocycles are oriented in the same direction, avoiding a close-packed structure. XPS experiments indicate the presence of a strong macrocycle-surface interaction. Also, MD simulations reveal substantial solvent effects. In particular, we find that co-adsorption of solvent molecules with the macrocycles induces desorption of lateral chains, and the solvent molecules act as spacers stabilizing the open self-assembly pattern.  相似文献   

3.
Using a [Ru(II)([9]aneS3)] templating moiety, kinetically-locked, metallomacrocycles incorporating adenine based ligands have been synthesised through self-assembly. The kinetically robust nature of these structures is confirmed by electrochemical studies: each can be reversibly oxidised in a four-member redox series, containing two formally mixed valence states. Unusually, the electrochemically derived comproportionation constants for these mixed valence states are very different, suggesting that intermetallic coupling differs between the two states. Spectroelectochemistry studies confirm that while the [Ru(II)2Ru(III)] state is valence localised, the [Ru(II)Ru(III)2] state is electronically delocalised. Mechanisms by which this switching effect could occur, which involve the unusual connectivities in these mixed valence species, are presented.  相似文献   

4.
Shape-persistent arylene ethynylene macrocycles have attracted much attention in supramolecular chemistry and materials science because of their unique structures and novel properties. In this Review we describe recent examples of macrocycle synthesis by cross-coupling (Sonogashira: aryl acetylene macrocycle or Glaser: aryl diacetylene macrocycle) and dynamic covalent chemistry. The primary disadvantage of the coupling methods is the kinetically determined product distribution, since a significant portion of oligomers grow beyond the length of the cyclic targets ("overshooting"). Better results have been obtained recently by a dynamic covalent approach involving reversible metathesis reactions that afford macrocycles in one step. Mechanistic studies demonstrate that macrocycle formation is thermodynamically controlled by this route. Remaining synthetic challenges include the efficient preparation of site-specifically functionalized structures and larger, more complex two- and three-dimensional molecules.  相似文献   

5.
The templated synthesis of organic macrocycles containing rings of up to 96 atoms and three 2,2′‐bipyridine (bpy) units is described. Starting with the bpy‐centred ligands 5,5′‐bis[3‐(1,4‐dioxahept‐6‐enylphenyl)]‐2,2′‐bipyridine and 5,5′‐bis[3‐(1,4,7‐trioxadec‐9‐enylphenyl)]‐2,2′‐bipyridine, we have applied Grubbs’ methodology to couple the terminal alkene units of the coordinated ligands in [FeL3]2+ complexes. Hydrogenation and demetallation of the iron(II)‐containing macrocyclic complexes results in the isolation of large organic macrocycles. The latter bind {Ru(bpy)2} units to give macrocyclic complexes with exocyclic ruthenium(II)‐containing domains. The complex [Ru(bpy)2(L)]2+ (isolated as the hexafluorophosphate salt), in which L=5,5′‐bis[3‐(1,4,7,10‐tetraoxatridec‐12‐enylphenyl)]‐2,2′‐bipyridine, undergoes intramolecular ring‐closing metathesis to yield a macrocycle which retains the exocyclic {Ru(bpy)2} unit. The poly(ethyleneoxy) domains in the latter macrocycle readily scavenge sodium ions, as proven by single‐crystal X‐ray diffraction and atomic absorption spectroscopy data for the bulk sample. In addition to the new compounds, a series of model complexes have been fully characterized, and representative single‐crystal X‐ray structural data are presented for iron(II) and ruthenium(II) acyclic and macrocyclic species.  相似文献   

6.
A metal template approach affords in high yield a tetra-Zn(salphen) macrocycle (3) which shows strong and cooperative self-assembly mediated by the formation of Zn(salphen) dimer units held together via μ(2)-phenoxo interactions. A cooperative binding mode for the tetranuclear Zn(4) macrocycle 3 is supported by comparison of UV-vis and fluorescence titration data recorded for 3 when compared with respective mononuclear and dinuclear Zn(salphen) model compounds. UV-vis dilution experiments carried out for Zn(4) macrocycle 3 and its Pd(4) analogue 4, as well as comparative TEM studies involving the same tetranuclear macrocycles further support the strong assembly behavior of 3. This self-assembly seems to be primarily dictated by its ability to form multiple, self-assembled dimeric [Zn(salphen)](2) units.  相似文献   

7.
Mechanistic studies on the direct formation of arylene ethynylene macrocycles via alkyne metathesis catalyzed by a molybdenum complex are reported. Gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry on the products from metathesis of monomer 1 show the initial formation of linear oligomers and large macrocycles (n > 6), followed by their transformation into the thermodynamically most stable product distribution-mainly the cyclic hexamer. Variable temperature and scrambling experiments reveal the reversibility of macrocycle formation. Nearly identical product distributions are observed from the cross metathesis of hexacycle 2 with diphenylacetylene and from the metathesis of bis(phenylethynyl) substituted monomer 4, demonstrating that macrocycle formation is thermodynamically rather than kinetically controlled. The metathesis byproduct, 3-hexyne, is shown to inhibit the catalyst. It is suggested that the relative metathesis rates of dialkylalkynes versus diarylalkynes trap the catalyst in a nonproductive manifold, rendering it unavailable for the productive metathesis of aryl alkylalkyne substrates. This finding indicates that dialkyl-substituted alkyne byproducts should be avoided (or efficiently removed) if the metatheses of aryl substrates, especially those with electron-withdrawing groups, are to proceed to high conversion.  相似文献   

8.
Details of complex formation kinetics are reported for tetrakis(2-hydroxyethyl) substituted cyclen (L(1)) and cyclam (L(2)) with Cu(II) and Co(II). Stopped-flow kinetics and spectroscopic titration methods were employed for the activation parameters and stability constants, respectively. X-ray studies revealed that the pendant 2-hydroxyethyl groups are not equivalent: two are folded over the macrocycle and maintained by intramolecular hydrogen bonds while the others are extended and pointed away from the macrocyclic cavity. Complex formation kinetics and spectroscopic titration were performed in aqueous acidic buffer solutions. Thermodynamic and kinetic parameters revealed that the ring size of the macrocycles plays an extremely important role for each metal ion studied. Stopped-flow kinetic measurements explained the mechanism of the complex formation process of both Cu(II) and Co(II) which proceed in outer-sphere interactions with ligands. There are two steps in the complex formation of the system studied. The initial step is a second order reaction between the metal ion and macrocycle with a second order rate constant.  相似文献   

9.
A series of lanthanide-containing macrocycles, Eu2-Eu5, exhibited unique luminescent responses in the presence of strong hydrogen-bond-accepting anions (F-, CH3COO-, and H2PO4-) in dimethyl sulfoxide. The macrocycles examined herein were designed to include a lanthanide chelate, aromatic spacers that function as antennae, thiourea groups as anion-binding units, and an alkyl or aryl linker between the thioureas that tailors the size and rigidity of the macrocycle. The anion-induced change in the emission intensity (lambda(exc) = 272 nm; lambda(em) = 614 nm) varied across the series of macrocycles and was dependent on the basicity of the anion. The largest luminescence response was observed in Eu(2), whereby the emission increased 77% upon the addition of 8 equiv of fluoride. A change in luminescence was not observed when exciting Eu3+ directly (lambda(exc) = 395 nm) over the course of anion titration experiments with all of the anions studied. These macrocycles contain only slight variations in structure, and insights into the mechanism of the anion interaction have been gained through monitoring of anion titrations via luminescence, absorbance, and luminescence lifetime measurements. In addition, model compounds (2-5) lacking the Eu3+ moiety were synthesized to study the binding pockets of Eu2-Eu5 using absorbance and 1H NMR spectroscopy. These studies indicate that the anions interact with the thiourea moiety of Eu2-Eu5, and the luminescent response is controlled by changes in the morphology of the macrocycle binding pocket.  相似文献   

10.
本文报道了五种新型四吡唑大环化合物的合成, 探讨了它们对Li^+, Na^+苦味酸盐的CH2Cl2液膜传递性能以及对Ru(Ⅱ)离子的配位作用。实验结果表明, 这类大环配体对两种碱金属离子具有较高的液膜传递速度; 与Ru(Ⅱ)的配合物中除四个吡唑环参与配位外, 另有一分子DMSO和分子H2O从轴向与Ru(Ⅱ)配位, 形成稳定的八面体配位结构。  相似文献   

11.
Michelle D. Pratt 《Tetrahedron》2004,60(49):11227-11238
New heterodinuclear ruthenium(II) bipyridyl-transition metal dithiocarbamate macrocycles have been prepared in good yields via metal directed self-assembly and shown to recognise anions. 1H NMR anion titration studies reveal the nature of the bipyridyl amide metal dithiocarbamate spacer unit in the respective dinuclear metal macrocycle influences significantly the strength of chloride and bromide complexation in DMSO solutions. Luminescence spectroscopy was used to sense anions in polar organic solutions via notable emission enhancement and quenching of the respective ruthenium(II) bipyridyl groups in the receptors.  相似文献   

12.
While the non-templated reaction of racemic trans-1,2-diaminocyclohexane with 2,6-diformylpyridine leads to a mixture of 2?+?2 and 4?+?4 macrocyclic imines, the reaction of the isolated 2?+?2 macrocycle with cadmium(II) chloride results in the fusion of three smaller macrocyclic units into a large 6?+?6 macrocycle. The X-ray molecular structures of the hexanuclear cadmium complex of this macrocycle as well as the derived 6?+?6 protonated amine reveal multiply folded macrocycles that adopt container-type conformations.  相似文献   

13.
Permanently interlocked [2]rotaxane ligands can be created by capping a pyridine terminated [2]pseudorotaxane with terpyridine containing stoppers. The robust nature of the resulting [2]rotaxane ligand allows coordination to inert metals such as Ru(II) not possible under standard self-assembly conditions.  相似文献   

14.
The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2'-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.  相似文献   

15.
A trinuclear heterobimetallic Ru(II)/Pt(II) complex, cis-{Ru(phen)2[CN-Pt(DMSO)Cl2]2} (phen = 1,10-phenanthroline), is able to function as a "switch-on" luminescent chemodosimeter for sulfhydryl-containing amino acids and peptides via specific binding of the amino acids/peptides with the Pt(II) centers and the subsequent cleavage of the Ru(II)-Pt(II) cyano-bridge.  相似文献   

16.
Two novel heptadentate ligands, pentaaza macrocycles with two pendant xpyridyl and phenol groups, were prepared and the crystal structure of the manganese(II) complex of N,N′-bis(2-pyridylmethyl)-pentaaza macrocycle revealed a pentagonal bipyramidal geometry.  相似文献   

17.
The self-assembly of foldamers into macrocycles is a simple approach to non-biological higher-order structure. Previous work on the co-assembly of ortho-phenylene foldamers with rod-shaped linkers has shown that folding and self-assembly affect each other; that is, the combination leads to new emergent behavior, such as access to otherwise unfavorable folding states. To this point this relationship has been passive. Here, we demonstrate control of self-assembly by manipulating the foldamers'' conformational energy surfaces. A series of o-phenylene decamers and octamers have been assembled into macrocycles using imine condensation. Product distributions were analyzed by gel-permeation chromatography and molecular geometries extracted from a combination of NMR spectroscopy and computational chemistry. The assembly of o-phenylene decamers functionalized with alkoxy groups or hydrogens gives both [2 + 2] and [3 + 3] macrocycles. The mixture results from a subtle balance of entropic and enthalpic effects in these systems: the smaller [2 + 2] macrocycles are entropically favored but require the oligomer to misfold, whereas a perfectly folded decamer fits well within the larger [3 + 3] macrocycle that is entropically disfavored. Changing the substituents to fluoro groups, however, shifts assembly quantitatively to the [3 + 3] macrocycle products, even though the structural changes are well-removed from the functional groups directly participating in bond formation. The electron-withdrawing groups favor folding in these systems by strengthening arene–arene stacking interactions, increasing the enthalpic penalty to misfolding. The architectural changes are substantial even though the chemical perturbation is small: analogous o-phenylene octamers do not fit within macrocycles when perfectly folded, and quantitatively misfold to give small macrocycles regardless of substitution. Taken together, these results represent both a high level of structural control in structurally complex foldamer systems and the demonstration of large-amplitude structural changes as a consequence of a small structural effects.

The folding propensity of ortho-phenylene foldamers dictates the outcome of their self-assembly into macrocycles.  相似文献   

18.
In a recent study, the transition metal complex, cis-dichlorobis(2-,2'-dipyridyl)ruthenium (II) (Ru(bpy)2Cl2), and the macrocycle Ru(TPP)CO (TPP:- tetraphenylporphine) were bound to pyridine terminated self-assembled monolayers on quartz. Following modification of the quartz surface with metal complexes, the conducting polymer polyaniline was deposited via in situ polymerization. The sheet conductivity (as measured by the four-probe method) of the resulting polyaniline films deposited onto Ru(bpy)2Cl2 and Ru(TPP)CO surfaces was significantly enhanced relative to films deposited onto unmodified quartz. It is postulated that either the macrocycle or the transition metal complex-modified surface interacts with the conducting polymer as it is forming, resulting in a more ordered expanded coil conformation for the polymer. The net result of such an interaction is a thin film possessing significantly greater electrical conductivity.  相似文献   

19.
A large number of macrocycles containing alternating repeats of cystine diOMe(-NH-CH(CO(2)Me)-CH(2)-S-)(2) and either a conformationally rigid aromatic/alicyclic moiety or a flexible polymethylene unit (X) in the cyclic backbone with ring size varying from 13- to 78-membered have been examined by spectral ((1)H NMR, FT-IR, CD) and X-ray crystallography studies for unusual conformational preferences. While (1)H NMR measurements indicated a turnlike conformation for all macrocycles, stabilized by intramolecular NH.CO hydrogen bonding, as also supported by FT-IR spectra in chloroform, convincing proof for beta-turn structures was provided by circular dichroism studies. Single-crystal X-ray studies on 39-membered cyclo (Adm-L-Cyst)(3) revealed a double-helical fold (figure-eight motif) for the macrocycle. Only a right-handed double helix was seen in the macrocycle constructed from L-cystine. The mirror-image macrocycle made up of D-cystine units exhibited a double helix with exactly the opposite screw sense, as expected. The enantiomeric figure-eights were stabilized by two intramolecular NH. CO hydrogen bonds and exhibited identical (1) H NMR and FT-IR spectra. The CD spectra of both isomers had a mirror-image relationship. The present results have clearly brought out the importance of cystine residues in inducing turn conformation that may be an important deciding factor for the adoption of topologically important structures by macrocycles containing multiple S-S linkages.  相似文献   

20.
The synthesis and characterisation of a rigid nanoscale macrocycle with two exotopic phenanthroline binding sites is reported. Scanning tunnelling microscopy (STM) at the solid-liquid interface reveals the formation of highly ordered monolayers of macrocycles with dimensions that are in good agreement with the calculated structure. Using the HETPHEN concept several bisheteroleptic coordination complexes with other phenanthrolines and a nanoscale basket assembly were prepared in presence of copper(I) ions. NMR spectroscopy, mass spectrometric data and elemental analysis point to three distinct isomers of the basket assembly in solution. A silver basket was prepared and readily converted to its copper analogue. Electrospray ionisation (ESI)-MS and spectrophotometric investigations provided additional mechanistic insight into the assembly process. Hence, the exotopic bisphenanthroline macrocycle in combination with HETPHEN concept proves to be very effective in controlling the compositional aspects of multicomponent self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号