首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Resolvin E1 (RvE1, 5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) is a novel anti-inflammatory lipid mediator recently found in humans, mice, and fish in vivo. To identify endogenous RvE1 and other eicosapentaenoic acid (EPA)-derived lipid mediators using electrospray low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), the MS/MS product ion spectra of these compounds were correlated with their structures, and the MS/MS fragmentation mechanisms were studied. Deuterium labeling confirmed the proposed correlations and the fragmentation mechanisms. beta-cleavage was observed for RvE1, and beta and gamma cleavages were seen for leukotriene B5; however, alpha-cleavage was more common. The positions and numbers of hydroxyls and double bonds of these lipid mediators can be deduced from the MS/MS spectra. The MS/MS fragmentation generating chain-cut ions involved beta-ene, gamma-ene, or alpha-H-beta-ene rearrangement, depending on the specific structure. The m/z value of a detected chain-cut ion from RvE1 or from an EPA-derived product is equal to the corresponding hypothetical homolytic segment (cc, cm, mc, or mm) with the addition or extraction of up to two hydrogen atoms (H) from hydroxyls or an alpha-carbon; namely, the m/z value of an alpha-cleavage-generated ion is equal to [cc+H], [cm-2H], [mc-H], or [mm]. Wideband activation increased the signal intensities of chain-cut ions, and therefore was better for trace analysis of RvE1 in biological samples. RvE1, LTB5, PGE3, and other EPA-derived lipid mediators were found in trout brain or head-kidney via this approach on the basis of MS/MS spectra and fragmentation mechanisms. Negative ion electrospray low-collision-energy MS/MS spectra provide adequate data to elucidate and identify the structures of RvE1 and other EPA-derived lipid mediators at levels below a few picomoles in trout samples.  相似文献   

2.
Linear ion-trap (LIT) MS2 mass spectrometric approach toward locating the position of double bond(s) of unsaturated long-chain fatty acids and toward discerning among isomeric unsaturated fatty acids as dilithiated adduct ([M-H+2Li]+) ions are described in this report. Upon resonance excitation in a LIT instrument, charge-remote fragmentation that involves beta-cleavage with gamma-H shift (McLafferty rearrangement) is the predominant fragmentation pathway seen for the [M-H+2Li]+ ions of monoenoic long-chain fatty acids. The fragmentation process results in a dilithiated product ion of terminally unsaturated fatty acid, which undergoes consecutive McLafferty rearrangement to eliminate a propylene residue, and gives rise to another dilithiated adduct ion of terminally unsaturated fatty acid. In addition to the above-cited fragmentation process, the [M-H+2Li]+ ions of homoconjugated dienoic long-chain fatty acids also undergo alpha-cleavage(s) with shift of the allylic hydrogen situated between the homoconjugated double bonds to the unsaturated site. These fragmentation pathways lead to two types of CC bond cleavages that are allylic (alpha-cleavage) or vinylic, respectively, to the proximal CC double bond, resulting in two distinct sets of ion series, in which each ion series is separated by a CH2CHCH (40 Da) residue. These latter fragmentations are the predominant processes seen for the polyunsaturated long-chain fatty acids. The spectrum feature dependent on the position of unsaturated double bond(s) affords unambiguous assignment of the position of double bond(s) of long-chain unsaturated fatty acids.  相似文献   

3.
Derivatization of a variety of peptides by a method known to enhance anhydride formation is demonstrated by mass spectrometry to yield ions that have elemental composition and fragmentation properties identical to [b(n-1) + OH + H]+ ions formed by gas-phase rearrangement and fragmentation. The [b(n-1) + OH + H]+ ions formed by gas-phase rearrangement and fragmentation and the solution-phase [b(n-1) + OH + H]+ ion structural analogs formed by derivatization chemistry show two different forms of dissociation using multiple-collision CAD in a quadrupole ion trap and unimolecular decomposition in a TOF-TOF; one group yields identical product ions as a truncated form of the peptide with a free C-terminal carboxylic acid and fragments at the same activation energy; the other group fragments differently from the truncated peptide, being more resistant to fragmentation than the truncated peptide and yielding primarily the [b(n-2) + OH + H]+ product ion. Nonergodic electron capture dissociation MS/MS suggests that any structural differences between the specific-fragmenting [b(n-1) + OH + H]+ ions and the truncated peptide is at the C-terminus of the peptide. The specific-fragmentation can be readily observed by MS(n) experiments to occur in an iterative fashion, suggesting that the C-terminal structure of the original [b(n-1) + OH + H]+ ion is maintained after subsequent rearrangement and fragmentation events in peptides which fragment specifically. A mechanism for the formation of specific-fragmenting and nonspecific-fragmenting [b(n-1) + OH + H]+ ions is proposed.  相似文献   

4.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

5.
Saccharides (mono through hexasaccharides) that mimic the terminal epitopes of O-antigens of Vibrio cholerae O:1, serotypes Ogawa and Inaba, were studied by electrospray ion trap (ESI IT) mass spectrometry (MS) in the negative mode. Anionized adducts are the characteristic ions formed by the capture of H(3)O(2)(-) under the condition of ESI MS analysis. The reactive species are produced by reaction of hydroxyl anions with the molecule of water. Thus the [M + H(3)O(2)](-) have the highest m/z value in the ESI IT negative mass spectra. After dissociation of adducts by loss of 2H(2)O the [M-H](-) ions are produced. The fragmentation pathways were confirmed by multistage measurements (MS(n)). The predominant pathway of fragmentation of the mono- and oligomers is the elimination of a molecule of alpha- hydroxy--gammabutyrolactone from the 4-(3-deoxy-L-glycero-tetronamido) group. The other characteristic pathway occurs by shortening the length of oligosaccharides. In this way, conversion of the Ogawa to Inaba fragments takes place under the conditions of measurement. Negative ESI MS/MS provided sufficient information about molecular mass, the number of saccharide residues, basic structure of saccharides, about the tetronamide part of the compounds investigated and allowed Ogawa and Inaba serotypes to be distinguished.  相似文献   

6.
A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.  相似文献   

7.
Unimolecular dissociation of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) generates SiC(5)H(16)NO(+) and SiC(5)H(14)N(+). The formation of SiC(5)H(16)NO(+) involves dissociation of a Si[bond]O bond and formation of an O[bond]H bond through rearrangement. The fragmentation mechanism was investigated utilizing ab initio calculations and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry in combination with hydrogen/deuterium (H/D) exchange reactions. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) studies of the fully deuterated ion D(2)N(CH(2))(3)SiOSi(CH(2))(3)ND(3)(+) provided convincing evidence for a backbiting mechanism which involves hydrogen transfer from the terminal amine group to the oxygen to form a silanol-containing species. Theoretical calculations indicated decomposition of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) through a backbiting mechanism is the lowest energy decomposition channel, compared with other alternative routes. Two mechanisms were proposed for the fragmentation process which leads to the siloxane bond cleavage and the SORI-CID results of partially deuterated precursor ions suggest both mechanisms should be operative. Rearrangement to yield a silanol-containing product ion requires end groups possessing a labile hydrogen atom. Decomposition of disiloxane ions with end groups lacking labile hydrogen atoms yielded product ions from direct bond cleavages.  相似文献   

8.
In context of an analysis of the effect of the central atom E of gaseous radical cations of phenyl pnictogens C(6)H(5)EH(2), E = N (1), P (2), and As (3), the mass spectrometric reactions of phenyl phosphane 2 have been re-investigated by D-labeling and by using methods of tandem mass spectrometry. The 70 eV mass spectrum of 2 shows the base peak for ion [M-2H](*+) and significant peaks for ions [M-H](+), [M-(2C,3H)](+), [M-PH] (*+), and [M-(C,P,2H)](+). Metastable 2(*+) fragments exclusively by loss of H(2), and the investigation of deuterated 2-d(2) shows that excessive H/D migrations occur before fragmentation. Other significant fragment ions in the mass spectrum of 2 arise by losses of C(2)H(2,) P, or HCP from the ion [M-H](+). This mass spectrometric behavior puts the radical cation 2(*+) in between the fragmentation reactions of aniline radical cation 1(*+) (loss of H and subsequent losses of C(2)H(2,) or HCN) and phenyl arsane radical cation 3(*+) (elimination of H(2) and loss of As from ion [M-H](+)). The fragmentation mechanisms of the radical cations 1(*+) -3(*+) and of related ions were analyzed by calculations of the enthalpy of relevant species at the stationary points of the minimum enthalpy reaction pathways using the DFT hybrid functionals UBHLYP/6-311+G(2d,p)//UBHLYP/6-311+G(d). The results show that, in contrast to ionized aniline 1(*+), the reactions of the derivatives 2(*+) and 3(*+) of the heavier main group elements P and As are characterized by an easy elimination of H(2)via a reductive elimination of group C(6)H(5)-E (E = P, As) and by a special stability of bicyclic isomers of 2(*+) and 3(*+). Thus, while 1(*+) rearranges by ring expansion and formation an 7-aza-tropylium cation by loss of H., the increased stability of bicyclic intermediates in the rearrangement of 2(*+) and in particular of 3(*+) results in separate rearrangement pathways. The origin of these effects is the more extended and diffuse nature of the 3p and 4p AO of P and As.  相似文献   

9.
Cationic metal ion-coordinated N-diisopropyloxyphosphoryl dipeptides (DIPP-dipeptides) were analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MS n ). Two novel rearrangement reactions with hydroxyl oxygen or carbonyl oxygen migrations were observed in ESI-MS/MS of the metallic adducts of DIPP-dipeptides, but not for the corresponding protonated DIPP-dipeptides. The possible oxygen migration mechanisms were elucidated through a combination of MS/MS experiments, isotope (18O, 15N, and 2H) labeling, accurate mass measurements, and density functional theory (DFT) calculations at the B3LYP/6-31 G(d) level. It was found that lithium and sodium cations catalyze the carbonyl oxygen migration more efficiently than does potassium and participation through a cyclic phosphoryl intermediate. In addition, dipeptides having a C-terminal hydroxyl or aromatic amino acid residue show a more favorable rearrangement through carbonyl oxygen migration, which may be due to metal cation stabilization by the donation of lone pair of the hydroxyl oxygen or aromatic π-electrons of the C-terminal amino acid residue, respectively. It was further shown that the metal ions, namely lithium, sodium, and potassium cations, could play a novel directing role for the migration of hydroxyl or carbonyl oxygen in the gas phase. This discovery suggests that interactions between phosphorylated biomolecules and proteins might involve the assistance of metal ions to coordinate the phosphoryl oxygen and protein side chains to achieve molecular recognition.  相似文献   

10.
Chen BH  Liu JT  Chen WX  Chen HM  Lin CH 《Talanta》2008,74(4):512-517
Certain characteristic fragmentations of tryptamines (indoleethylamine) and phenethylamines are described. Based on the GC-EI/MS, LC-ESI/MS and MALDI/TOFMS, the mass fragmentations of 13 standard compounds, including alpha-methyltryptamine (AMT), N,N-dimethyltryptamine (DMT), 5-methoxy-alpha-methyltryptamine (5-MeO-AMT), N,N-diethyltryptamine (DET), N,N-dipropyltryptamine (DPT), N,N-dibutyltryptamine (DBT), N,N-diisopropyltryptamine (DIPT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), methamphetamine (MAMP), 3,4-methylenedioxyamphetamine (3,4-MDA), 3,4-methylenedioxymethamphetamine (3,4-MDMA) and 2-methylamino-1-(3,4-methylenedioxyphenyl)butane (MBDB), were compared. As a result, the parent ions of these analytes were hard to be obtained by GC/MS whereas the protonated molecular ions can be observed clearly by means of ESI/MS and MALDI/TOFMS. Furthermore, two major characteristic fragmentations, namely and alpha-cleavage ([M+H](+)-->[3-vinylindole](+)) and beta-cleavage ([M+H](+)-->[CH(2)N(+)R(N1)R(N2)]), are produced when the ESI and MALDI modes are used, respectively. In the case of ESI/MS, the fragment obtained from alpha-cleavage is the major process. In contrast to this, in the case of MALDI/TOFMS, the major fragment is produced via beta-cleavage. The ionization efficiency and fragments formed from either alpha- or beta-cleavages are closely related to the degree of alkylation of the side chain nitrogen in both cases.  相似文献   

11.
The mass spectrometric behavior of eleven 1-(N-benzyloxycarbonyl(Cbz)amino)alkylphosphonate diesters was studied under positive ion electrospray ionization (ESI) conditions. Their fragmentation pathways are depicted and supported by tandem mass spectrometry. Besides the common eliminations of ether, benzyl alcohol, phosphite and an ether plus benzyl alcohol from molecular ions, the title compounds show a tendency to undergo an interesting intramolecular benzyl rearrangement to yield benzylphosphonate ions. The fragmentation patterns do not depend on the substituent attached to the alpha-carbon atom.  相似文献   

12.
The mutual interconversion of the molecular ions [C5H6O]+ of 2-methylfuran (1), 3-methylfuran (2) and 4H-pyran (3) before fragmentation to [C5H5O]+ ions has been studied by collisional activation spectrometry, by deuterium labelling, by the kinetic energy release during the fragmentation, by appearance energles and by a MNDO calculation of the minimum energy reaction path. The electron impact and collisional activation mass spectra show clearly that the molecular ions of 1–3 do not equilibrate prior to fragmentation, but that mostly pyrylium ions [C5H5O]+ arise by the loss of a H atom. This implies an irreversible isomerization of methylfuran ions 1 and 2 into pyran ions before fragmentation, in contrast to the isomerization of the related systems toluene ions/cycloheptatriene ions. Complete H/D scrambling is observed in deuterated methylfuran ions prior to the H/D loss that is associated with an iostope effect kH/kD = 1.67–2.16 for metastable ions. In contrast, no H/D scrambling has been observed in deuterated 4H-pyran ions. However, the loss of a H atom from all metastable [C5H5O]+ ions gives rise to a flat-topped peak in the mass-analysed ion kinetic energy spectrum and a kinetic energy release (T50) of 26 ± 1.5 kJ mol?1. The MNDO calculation of the minimum energy reaction path reveals that methylfuran ions 1 and 2 favour a rearrangement into pyran ions before fragmentation into furfuryl ions, but that the energy barrier of the first rearrangement step is at least of the same height as the barrier for the dissociation of pyran ions into pyrylium ions. This agrees with the experimental results.  相似文献   

13.
We describe tandem mass spectrometric approaches, including multiple stage ion-trap and source collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) to characterize inositol phosphorylceramide (IPC) species seen as [M - H](-) and [M - 2H + Li](-) ions in the negative-ion mode as well as [M + H](+), [M + Li](+), and [M - H + 2Li](+) ions in the positive-ion mode. Following CAD in an ion-trap or a triple-stage quadrupole instrument, the [M - H](-) ions of IPC yielded fragment ions reflecting only the inositol and the fatty acyl substituent of the molecule. In contrast, the mass spectra from MS(3) of [M - H - Inositol](-) ions contained abundant ions that are readily applicable for assignment of the fatty acid and long-chain base (LCB) moieties. Both the product-ion spectra from MS(2) and MS(3) of the [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) ions also contained rich fragment ions informative for unambiguous assignment of the fatty acyl substituent and the LCB. However, the sensitivity of the ions observed in the forms of [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) (Alk = Li, Na) is nearly 10 times less than that observed in the [M - H](-) form. In addition to the major fragmentation pathways leading to elimination of the inositol or inositol monophosphate moiety, several structurally informative ions resulting from rearrangement processes were observed. The fragmentation processes are similar to those previously reported for ceramides. While the tandem mass spectrometric approach using MS(n) (n = 2, 3) permits the structures of the Leishmania major IPCs consisting of two isomeric structures to be unveiled in detail, tandem mass spectra from constant neutral loss scans may provide a simple method for detecting IPC in mixtures.  相似文献   

14.
The isomerization of the molecular ions of ethylbenzene, 7-methylcycloheptatriene and p-xylene by skeletal rearrangement prior to the formation of [C7H7]+ ions has been investigated by using 13C labelled compounds. The results obtained for ions generated by 70 eV and 12 eV electron impact, and fragmenting in the ion source, the 1st field free region and the 2nd field free region, respectively, are compared with those obtained from D labelled derivatives. It is shown that at long reaction times metastable p-xylene ions lose a methyl radical after scrambling of all C atoms and H atoms, while the unstable molecular ions in the ion source react by specific loss of one of the methyl substituents. Both unstable and metastable ethylbenzene ions fragment by two competing mechanisms, one corresponding to specific loss of the terminal methyl group, and the other involving scrambling of all C and H atoms. These results are discussed by use of a dynamic model developed for the mutual interconversion and fragmentation of the molecular ions of ethylbenzene, methylcyclo-heptatriene and p-xylene. The experimental results can be explained by an equilibrium between metastable methylcycloheptatriene ions and p-xylene ions with sufficient energy for skeletal rearrangement, while about 40% of the metastable ethylbenzene ions fragment after rearrangement to methylcycloheptatriene ions and about 60% of the ethylbenzene ions rearrange further to xylene ions before fragmentation. Metastable methylcycloheptatriene ions, mainly lose a methyl group without a skeletal rearrangement, however, because the rearranged ions are kinetically trapped as ‘stable’ xylene ions or ethylbenzene ions.  相似文献   

15.
Recent studies revealed that the 3'-terminal nucleotides in plant microRNAs were methylated on the ribose at the 2' or 3' hydroxyl groups. Here we examined the fragmentation of the electrospray-produced [M + H]+ and [M - H]- ions of 2'- and 3'-O-methylated ribonucleosides. It turned out that the predominant fragmentation pathway for the [M + H]+ ions of ribose-methylated nucleosides was the neutral loss of the methylated ribose, which made it impossible to distinguish 2'-O-methylation from 3'-O-methylation by positive-ion MS/MS. However, characteristic fragment ions, resulting from the cleavage through the ribose rings, were produced for the [M - H]- ions of each pair of ribose-methylated nucleosides. In this respect, the neutral loss of a 90-Da fragment (C3H6O3) was observed for 2'-O-methylated cytidine, guanosine and adenosine, but not for their 3'-O-methylated counterparts. On the other hand, the neutral loss of a 60-Da fragment (C2H4O2) was found for 3'-O-methyluridine, but not for 2'-O-methyluridine.  相似文献   

16.
Azaspiracids (AZAs) are a group of polyether toxins that cause food poisoning in humans. These toxins, produced by marine dinoflagellates, accumulate in filter-feeding shellfish, especially mussels. Sensitive liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS(n)) methods have been developed for the determination of the major AZAs and their hydroxyl analogues. These methods, utilising both chromatographic and mass resolution, were applied for the determination of 10 AZAs in mussels (Mytilus edulis). An optimised isocratic reversed phase method (3 microm Luna-2 C18 column) separated 10 azaspiracids using acetonitrile/water (46:54, v/v) containing 0.05% trifluoroacetic acid (TFA) and 0.004% ammonium acetate in 55 min. Analyte determination using MS3 involved trapping and fragmentation of the [M + H]+ and [M + H - H2O]+ ions with detection of the [M + H - 2H2O]+ ion for each AZA. Linear calibrations were obtained for AZA1, using spiked shellfish extracts, in the range 0.05-1.00 microg/ml (r2 = 0.997) with a detection limit of 5 pg (signal : noise = 3). The major fragmentation pathways in hydroxylated azaspiracids were elucidated using hydrogen/deuterium (H/D) exchange experiments. An LC-MS3 method was developed using unique parent ions and product ions, [M + H - H2O - CgH10O2R1R3]+, that involved fragmentation of the A-ring. This facilitated the discrimination between 10 azapiracids, AZA1-10. Thus, this rapid LC-MS3 method did not require complete chromatographic resolution and the run-time of 7 min had detection limits better than 20 pg for each toxin.  相似文献   

17.
The negative-ions of N-phosphoryl amino acids were studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The negative-ion ESI-MS/MS of N-phosphoryl amino acids showed characteristic fragmentation patterns different from those observed in the corresponding positive-ion ESI-MS/MS and negative-ion fast-atom bombardment mass spectra. For negative-ion ESI-MS/MS, a unique fragmentation from the N-terminal of N-phosphoryl amino acids or peptides containing a free beta-OH or CO(2)H group was observed to yield the characteristic fragment ion (RO)(2)P(O)O(-). The ease of the rearrangement depended on the position of the hydroxyl group in amino acids or peptides, and the N --> O rearrangement mechanism was proposed to involve the participation of the hydroxyl group. From previous solution-phase experiments and theoretical calculations, it was found that the beta-OH group was more active than gamma-OH, and the corresponding difference in negative-ion ESI-MS/MS was consistent with those previous findings.  相似文献   

18.
The structural characterization of sulfatides by collisional-activated dissociation (CAD) quadrupole ion-trap tandem mass spectrometric methods with electrospray ionization is described. When subjected to CAD in the negative-ion mode, the [M - H]- ions of sulfatides yield abundant structurally informative ions that permit unequivocal assignments of the long-chain base, and fatty acid constituent including the location of double bond. The identification of the position of the double bond on the fatty acyl substituent is based on the observation of the series of the ions arising from classical charge-remote fragmentation processes similar to those observed by high-energy CAD and by tandem quadrupole mass spectrometry. An unusual internal galactose residue loss due to a rearrangement process was also observed. The [M - H]- ions of sulfatides also dissociates to a ceramide anion, which undergoes consecutive fragmentation processes to yield ions informative for identification of the ceramide moiety and permits distinction the sulfatide with a sphingosine subclass from that with a sphinganine long-chain base subclass. The MS(2)-spectra of the sulfatide subclass with a sphingosine LCB and a alpha-hydroxy fatty acyl substituent (d18:1/hFA-sulfatide) are featured by the prominent ion sets of m/z 568, 550, 540, and 522, originated from a primary cleavage of the fatty acyl CO-CH(OH) bond, and are readily differentiable from those arising from the non-hydroxy sulfatide subclass (d18:1/nFA-sulfatide), in which the ion sets are of low abundance. The fragmentation pathways of sulfatides under low-energy CAD are proposed. The pathways are supported by the MS(2)- and MS(3)-spectra of various compounds, and of their H-D exchanged analogs.  相似文献   

19.
Three pairs of isomers of aconite alkaloids from Aconitum nagarum var. lasiandrum have been investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) employing ion-trap and quadrupole time-of-flight mass spectrometers in positive mode. Based on the differences of their fragmentation pathways and special fragment ions, three pairs of isomers of aconite alkaloids were differentiated. In addition, fragmentation laws of some veatchines and the discrepancy of fragmentation mechanisms between veatchine-type and aconitine-type alkaloid were also concluded. In the case of veatchines, a radical would be formed by homolysis of C18--C4 or C18--H bonds, followed by elimination of a series of C(2)H(2) and C(2)H(4). Moreover, the retro-Diels-Alder (RDA) reaction occurred in the E-ring and double-electron transfer triggered by the positive charge on C1 led to the formation of diagnostic ions at m/z 216. With regard to aconitine-type alkaloids, the N-substituent is not eliminated easily. Although there is no carbonyl group on some aconitine-type alkaloids, with hydroxyl and methoxyl on C15 and C16 respectively, CO was readily eliminated through tautomerization.  相似文献   

20.
A new complex of cyclic peptide lactone antibiotics from Bacillus subtilis, which we named Maltacines has recently been described. The structure elucidation of three of them is reported in this paper. The amino acid sequences and structures of the peptides were found by MS(n) of the ring-opened linear peptides that gave uninterrupted sequences of Bn and Y'n ions. The identities of four unknown residues in the sequences were solved by a combination of derivatisation with phenylisothiocyanate (PITC), high-resolution mass spectrometry and H/D exchange. The nature and position of the cyclic structure was disclosed by a chemo-selective ring opening with Na18OH and was found to be a lactone formed between a hydroxyl of residue number 4 and the C-terminal amino acid number 12. For verification of the structure of the B2 + ion, peptides with different combinations of P/Q and P/K at the N-terminus were synthesized. The structures of the four peptides is tentatively suggested to be: D1a: cyclo(4,12)-P-Q-Y-Adip-A-E-T-Y-Orn-HGly-Y-I-OH, D1b: cyclo(4,12)-P-Q-Y-Adip-A-E-T-Y-Orn-S-Y-I-OH and D1c: cyclo(4,12)-P-Q-Y-Adip-A-E-T-Y-K-S-Y-I-OH. Adip = aminodihydroxy pentanoic acid and HGly = hydroxyglycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号