首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unimolecular reactions of the radical cation of dimethyl phenylarsane, C6H5As(CH3)2, 1*+ and of the methyl phenylarsenium cation, C6H5As+CH3, 2+, in the gas phase were investigated using deuterium labeling and methods of tandem mass spectrometry. Additionally, the rearrangement and fragmentation processes were analyzed by density functional theory (DFT) calculations at the level UBHLYP/6- 311+G(2d,p)//UBHLYP/5-31+G(d). The molecular ion 1*+ decomposes by loss of a .CH3 radical from the As atom without any rearrangement, in contrast to the behavior of the phenylarsane radical cation. In particular, no positional exchange of the H atoms of the CH3 group and at the phenyl ring is observed. The results of DFT calculations show that a rearrangement of 1*+ by reductive elimination of As and shift of the CH3 group is indeed obstructed by a large activation barrier. The MIKE spectrum of 2+ shows that this arsenium cation fragments by losses of H2 and AsH. The fragmentation of the trideuteromethyl derivative 2-d3+ proves that all H atoms of the neutral fragments originate specifically from the methyl ligand. Identical fragmentation behavior is observed for metastable m-tolyl arsenium cation, m-CH3C6H4As+H, 2tol+. The loss of AsH generates ions C7H7+ which requires rearrangement in 2+ and bond formation between the phenyl and methyl ligands prior to fragmentation. The DFT calculations confirm that the precursor of this fragmentation is the benzyl methylarsenium cation 2bzl+, and that 2bzl+ is also the precursor ion fo the elimination of H2. The analysis of the pathways for rearrangements of 2+ to the key intermediate 2bzl+ by DFT calculations show that the preferred route corresponds to a 1,2-H shift of a H atom from the CH3 ligand to the As atom and a shift of the phenyl group in the reverse direction. The expected rearrangement by a reductive elimination of the As atom, which is observed for the phenylarsenium cation and for halogeno phenyl arsenium cations, requires much more activation enthalpy.  相似文献   

2.
The 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-))-photosensitized oxidation of phenyl alkyl sulfoxides (PhSOCR1R2R3, 1, R1 = R2 = H, R3 = Ph; 2, R1 = H, R2 = Me, R3 = Ph; 3, R1 = R2 = Ph, R3 = H; 4, R1 = R2 = Me, R3 = Ph; 5, R1 = R2 = R3 = Me) has been investigated by steady-state irradiation and nanosecond laser flash photolysis (LFP) under nitrogen in MeCN. Steady-state photolysis showed the formation of products deriving from the heterolytic C-S bond cleavage in the sulfoxide radical cations (alcohols, R1R2R3COH, and acetamides, R1R2R3CNHCOCH3) accompanied by sulfur-containing products (phenyl benzenethiosulfinate, diphenyl disulfide, and phenyl benzenethiosulfonate). By laser irradiation, the formation of 3-CN-NMQ(*) (lambda(max) = 390 nm) and sulfoxide radical cations 1(*+) , 2(*+), and 5(*+) (lambda(max) = 550 nm) was observed within the laser pulse. The radical cations decayed by first-order kinetics with a process attributable to the heterolytic C-S bond cleavage leading to the sulfinyl radical and an alkyl carbocation. The radical cations 3(*+) and 4(*+) fragment too rapidly, decaying within the laser pulse. The absorption band of the cation Ph2CH(+) (lambda(max) = 440 nm) was observed with 3 while the absorption bands of 3-CN-NMQ(*) and PhSO(*) (lambda(max) = 460 nm) were observed just after the laser pulse in the LFP experiment with 4. No competitive beta-C-H bond cleavage has been observed in the radical cations from 1-3. The C-S bond cleavage rates were measured for 1(*+), 2(*+), and 5(*+). For 3(*+) and 4(*+), only a lower limit (ca. >3 x 10(7) s(-1)) could be given. Quantum yields (Phi) and fragmentation first-order rate constants (k) appear to depend on the structure of the alkyl group and on the bond dissociation free energy (BDFE) of the C-S bond of the radical cations determined by a thermochemical cycle using the C-S BDEs for the neutral sulfoxides 1-5 obtained by DFT calculations. Namely, Phi and k increase as the C-S BDFE becomes more negative, that is in the order 1 < 5 < 2 < 3, 4, which is also the stability order of the alkyl carbocations formed in the cleavage. An estimate of the difference in the C-S bond cleavage rate between sulfoxide and sulfide radical cations was possible by comparing the fragmentation rate of 5(*+) (1.4 x 10(6) s(-1)) with the upper limit (10(4) s(-1)) given for tert-butyl phenyl sulfide radical cation (Baciocchi, E.; Del Giacco, T.; Gerini, M. F.; Lanzalunga, O. Org. Lett. 2006, 8, 641-644). It turns out that sulfoxide radical cations undergo C-S bond breaking at a rate at least 2 orders of magnitude faster than that of corresponding sulfide radical cations.  相似文献   

3.
Isomerization from cis stilbene derivatives (c-S (S = RCH=CHC(6)H(5): 1, R = C(6)H(5); 2, R = 4-CH(3)C(6)H(4); 3, R = 4-CH(3)OC(6)H(4) (= An); 4, R = 2,4-(CH(3)O)(2)C(6)H(3); 5, R = 3,4-(CH(3)O)(2)C(6)H(3); 6, R = 3,5-(CH(3)O)(2)C(6)H(3); 7, AnCH=C(CH(3))C(6)H(5); 8, AnCH=CHAn)) to trans isomers (t-S) and oxidation of S with O(2) were studied in gamma-ray radiolyses of c-S in Ar-saturated 1,2-dichloroethane (DCE) and of S in O(2)-saturated DCE, respectively. On the basis of product analyses, it is suggested that a smaller barrier to c-t unimolecular isomerization for c-3(*+)-5(*+) and 8(*+) than for c-1(*+), 2(*+), and 6(*+) due to the single bond character of the central C=C double bond for c-3(*+)-5(*+) and 8(*+) with a p-methoxyl group but not for c-1(*+), 2(*+), and 6(*+) without a p-methoxyl group because of the contribution of a quinoid-type structure induced by charge-spin separation. The isomerization proceeds via chain reaction mechanisms involving c-t unimolecular isomerization and endergonic hole transfer or dimerization and decomposition. The isomerization of c-3(*+) to t-3(*+) is catalyzed by addition of 1,4-dimethoxybenzene but terminated by triethylamine. The regioselective formation of 3d in oxidation of 3(*+) with O(2) is explained by spin localization on the beta-olefinic carbon in 3(*+). The results of product analyses are compared with the rate constants of the unimolecular isomerization and the oxidation for S(*+) measured with pulse radiolyses.  相似文献   

4.
We examined the fragmentation of the electrospray-produced [M-H]- and [M-2H]2- ions of a number of peptides containing two acidic amino acid residues, one being aspartic acid (Asp) or glutamic acid (Glu), and the other being cysteine sulfinic acid [C(SO2H)] or cysteine sulfonic acid [C(SO3H)], on an ion-trap mass spectrometer. We observed facile neutral losses of H2S and H2SO2 from the side chains of cysteine and C(SO2H), respectively, whereas the corresponding elimination of H2SO3 from the side chain of C(SO3H) was undetectable for most peptides that we investigated. In addition, the collisional activation of the [M-H]- ions of the C(SO2H)-containing peptides resulted in the cleavage of the amide bond on the C-terminal side of the C(SO2H) residue. Moreover, collisional activation of the [M-2H]2- ions of the above Asp-containing peptides led to the cleavage of the backbone N-Calpha bond of the Asp residue to give cn and/or its complementary [zn-H2O] ions. Similar cleavage also occurred for the singly deprotonated ions of the otherwise identical peptides with a C-terminal amide functionality, but not for the [M-H]- ions of same peptides with a free C-terminal carboxylic acid. Furthermore, ab initio calculation results for model cleavage reactions are consistent with the selective cleavage of the backbone N-Calpha bond in the Asp residue.  相似文献   

5.
Excited-state properties of radical cations of substituted oligothiophenes ( nT (*+), n denotes the number of thiophene rings, n = 3, 4, 5) in solution were investigated by using various laser flash photolysis techniques including two-color two-laser flash photolysis. nT (*+) generated by photoinduced electron transfer to p-chloranil or resonant two-photon ionization (RTPI) by using the first 355-nm ns laser irradiation was selectively excited with the second picosecond laser (532 nm). Bleaching of the absorption of nT (*+) together with growth of a new absorption was observed during the second laser irradiation, indicating the generation of nT (*+) in the excited state ( nT (*+)*). The D 1 state lifetime was estimated to be 34 +/- 4, 24 +/- 2, and 18 +/- 1 ps for 3T (*+), 4T (*+), and 5T (*+), respectively. In the presence of hole acceptor (Q), bleaching of nT (*+) and growth of Q (*+) were observed upon selective excitation of nT (*+) during the nanosecond-nanosecond two-color two-laser flash photolysis, indicating the hole transfer from nT (*+)(D 1) to Q. Recovery of nT (*+) was also observed together with decay of Q (*+) because of regeneration of nT (*+) by hole transfer from Q (*+) to nT at the diffusion-limiting rate. It was suggested that the hole transfer rate ( k HT) from nT (*+)(D 1) to Q depended on the free-energy change for hole transfer (-Delta G = 1.41-0.46 eV). The estimated k HT faster than the diffusion-limiting rate can be explained by the contribution of the static quenching for the excited species in the presence of high concentration of Q (0.1-1.0 M).  相似文献   

6.
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).  相似文献   

7.
The electron ionization mass spectrometric behavior of pyrroloquinazolinones (1-6) and isoindoloquinazolinones (7-14) was studied. These compounds were further classified as partly saturated pyrroloquinazolinones (1-3), benzologues (7-11), methylene-bridged derivatives (4-6, 12, 13) and a bisacyl compound (14). The mass spectra of the pyrrolo- and isoindoloquinazolinones did not exhibit stereospecific retro-Diels-Alder (RDA) fragmentations. The cyclohexane-fused compounds 7 (cis annelated) and 8 (trans annelated) did display some other ions differing in their abundances that could be used to differentiate this pair of stereoisomers. Also the cyclohexene-fused compounds 2, 3, 9 and 10 exhibited somewhat different ion abundances pairwise that could be utilized for isomeric differentiation. Earlier hypothesis of pyrrolo ring cleavage via the loss of C(3)H(5)O(.) was strengthened by the fragmentation of compounds 1-4. RDA(+/-H) fragmentation is more favorable than the formation of [M-R](+) ions (R=H, C(6)H(4)CH(3), or C(6)H(4)Cl) when an unsaturated bicyclic group is present but both RDA fragmentation and [M-R](+) formation occur for cyclohexene-fused compounds, possibly because of the lower ring strain than with norbornene-fused compounds. The [M-H](+) ion was abundant for compounds 7 and 8 as was [M-Ar](+) for 1-4 and 11. Although the compounds studied might participate in amide-imidol tautomerism, no indication of such tautomerism was detected.  相似文献   

8.
Both theoretical and experimental investigations are reported for the gas-phase hydrolysis of the radical cation of ketene, H(2)CCO(*+). Density functional theory (DFT) with the B3LYP/6-311++G(d,p) method indicates that a second water molecule is required as a catalyst for the addition of water across the C=O bond in H(2)CCO(*+) by eliminating the activation barrier for the conversion of [H(2)CCO.H(2)O](*+) to [H(2)CC(OH)(2)](*+). Theory further indicates that [H(2)CC(OH)(2).H(2)O](*+) may recombine with electrons to produce neutral acetic acid. Experimental results of flow-reactor tandem mass spectrometer experiments in which CH(2)CO(*+) ions were produced either directly from ketene by electron transfer or by the chemical reaction of CH(2)(*+) with CO are consistent with formation of an (C(2),H(4),O(2))(*+) ion in a reaction second-order in H(2)O. Furthermore, comparative multi-CID experiments indicate that this ion is likely to be the enolic CH(2)C(OH)(2)(*+) cation. The results suggest a possible mechanism for the formation of acetic acid from ketene and water on icy surfaces in hot cores and interstellar clouds.  相似文献   

9.
The negative-ion electrospray mass spectrometric behavior of dicarboxylated polyethylene glycols (CPEGCs) is discussed. Both [M-H](-) and [M-2H](2-) ions were observed. It was found that the ratio [M-2H](2-)/[M-H](-) is affected by oxyethylene chain length, solvent polarity, analyte concentration and applied cone voltage.  相似文献   

10.
Dextran was partially hydrolyzed with 0.1 mol/l HCl and the hydrolysate was derivatized with 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) by reductive amination. The derivatized-oligosaccharide mixture was separated by capillary electrophoresis (CE) in a buffer of 1% HAc-NH4OH, pH 3.4, and the separated components were detected on-line by electrospray ionization quadrupole ion trap mass spectrometry (ESI-QIT-MS) in the negative ion mode. A mass accuracy lower than 0.01% could be achieved and as low as 1.6 pmol of detxran octaose could be detected. ANTS-derivatized dextran oligosaccharide with a degree of polymerization (DP) lower than 6 produced both [M-H]- and [M-2H]2- ions, whereas those with a DP of 6 or higher than 6 produced only [M-2H]2- ion. As 1< or =DP< or =6, the percentage of [M-2H]2- ion in the total ions of [M-H]- and [M-2H]2- was found to be a linear function of the logarithmic DP. Molecular mass determination with ESI-QIT-MS strengthens the power of CE analysis of oligosaccharides.  相似文献   

11.
Electrospray ionization mass spectra of some glycosyl dithioacetals recorded in the presence of transition-metal chlorides, XCl2 (where X = Co, Mn and Zn), give abundant adduct ions such as [M+XCl]+ and [2M-H+X]+ and minor ions such as [M-H+X]+ and [2M+XCl]+. The tandem mass spectra of these adducts show characteristic elimination of neutral molecules such as H2O, HCl, EtSH, CH2O, C2H4O2/C2H4O. [M+XCl]+ ions fragment readily and the fragmentation appears to be stereochemically controlled as the relative abundances of the fragments are different for three stereoisomers. The added metal is lost as neutral molecules in the form of XCl(OH) and XCl(SEt). This is a predominant pathway in the ZnCl+ adducts. [2M+XCl]+ ions fragment preferentially by elimination of HCl, indicating strong metal interactions in the resulting dimeric [2M-H+X]+ ion. As there are several electron-rich centers in the molecule, the dimeric complex [2M-H+X]+ can have several structures and the observed fragmentations may reflect the sum of those of all these structures. The dimeric complexes fragment by elimination of neutral molecules leaving the dimeric interactions intact. The extent of fragmentation varies for the stereoisomers, leading to stereochemical differentiation.  相似文献   

12.
The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H atoms over all positions in 1*+. The distonic radical cation 1*+ is predisposed for the elimination of an As atom or an AsH fragment. The calculations are in accordance with the experimentally preferred reactions when the As atom and the AsH fragment are generated in the quartet and triplet state, respectively. Alternatively, 1*(+) undergoes a reductive elimination of H2 from the AsH2 group via a remarkably stable complex of the phenylarsandiyl radical cation, [C6H5As]*+ and an H2 molecule.  相似文献   

13.
Ginsenosides containing different numbers of glycosyl groups can be easily differentiated based on the formation of characteristic ginsenoside-acetate adduct anions and deprotonated ginsenosides generated by electrospray ionization (ESI) of methanolic solutions of ginsenosides (M) and ammonium acetate (NH4OAc). Ginsenosides containing two glycosyl groups gave a characteristic mass spectral pattern consisting of [M+2OAc]2-, [M-H+OAc]2- and [M-2H]2- ions with m/z values differing by 30 Th, while this mass spectral pattern was not observed for ginsenosides containing one glycosyl group. Formation of [M+2OAc]2- was influenced by the chain length of glycosyl groups and was used to differentiate the ginsenosides containing different combinations of monosaccharide and disaccharide units in the glycosyl groups. Under identical collisional activation conditions, [M+OAc]-, [M-H+OAc]2- and [M+2OAc]2- underwent proton abstractions predominantly to generate [M-H]-, [M-2H]2- and [M-H+OAc]2- ions, respectively. The ion intensity ratios, I[M-H](-/I) [M+OAc]-, I[M-2H](2-/I) [M-H+2OAc]2- and I[M-H+OAc](2-/I) [M+OAc]2-, being sensitive to the structural differences of ginsenosides, could differentiate the isomeric ginsenosides, including (i) Rf, F11 and Rg1, (ii) Rd and Re, and (iii) Rb2 and Rc. Additionally, NH4OAc was found to enhance the sensitivity of detection of ginsenosides in the form of [M-H]- down to the femtomole level.  相似文献   

14.
The high-energy collision-induced dissociation of the phenylsilane molecular ion generated by electron ionization has been investigated using tandem mass spectrometry (MS/MS). It was observed that the dissociation of the molecular ion (M(+*)) occurs mainly via [M-H](+), [M-2H](+*), and [M-3H](+), followed by two consecutive losses of C(2)H(2). The structures of the precursors for the [M-CH(3)](+), [M-SiH](+), and [M-SiH(2)](+*) ions are proposed. The data suggest that the molecular ion undergoes rearrangements to several isomers prior to dissociation, including the ion containing a five-membered carbon ring. Reaction mechanisms are proposed for the dissociations via the isomeric molecular ions.  相似文献   

15.
The electron ionization mass spectra of 1-cyclopropyl-4-substituted-1,2,3,6-tetrahydropyridine derivatives are characterized by a base peak corresponding to [M-15]+. Evidence is presented to support a fragmentation process involving an initial cyclopropyl ring opening of the parent cyclopropylaminyl radical cation followed by intramolecular transfer of a hydrogen atom from the ring carbon atoms α to nitrogen to the primary carbon-centered radical and finally a fragmentation step proceeding by loss of a methyl radical and formation of a stable N-ethenyldihydropyridinium ion, the [M-15]+ fragment.  相似文献   

16.
A method incorporating high-performance liquid chromatography (HPLC) with electrospray ionization and tandem mass spectrometry, with parallel analysis by HPLC with UV detection using a diode-array detector, was developed for the qualitative characterization of flavonoids in D. odorifera. Twenty-three flavonoids, including six isoflavones, six neoflavones, four isoflavanones, three flavanones, two chalcones, one isoflavanonol and one pterocarpan, were unambiguously identified by comparing their retention times, UV and MS spectra with those of authentic compounds. Furthermore, the collision-induced dissociations of the [M-H]- ions were studied to clarify the MS behavior of the different types of flavonoids. In negative ion ESI-MS all the flavonoids yielded prominent [M-H]- ions in the first order mass spectra. Fragments involving losses of CH3*, H2O, CO, C2H2O, and CO2 were observed in the MS/MS spectra. Each of the seven types of flavonoid showed characteristic MS/MS fragmentation patterns. The isoflavanones, flavanones and chalcones were observed to undergo retro-Diels-Alder fragmentations. The spectra of almost all the neoflavonoids unexpectedly exhibited only [M-H-CH3]-* radical anions as base peaks without any further fragmentation. Substitution positions also remarkably influenced the fragmentation behavior, which could assist in distinction among the flavonoid isomers. The fragmentation rules deduced here could aid in the characterization of other flavonoids of these types.  相似文献   

17.
The electron-transfer-catalyzed rearrangement of the housanes 1 affords regioselectively the two cyclopentenes 2 and 3 by 1,2-migration of a group at the methano bridge. Appropriate ring annelation in the intermediary cyclopentane-1,3-diyl radical cation 1(*+) changes the stereochemical course of the rearrangement from complete stereoselectivity (stereochemical memory) for the structurally simple housane 1b to partial loss of stereoselectivity through competing conformational interconversion for the tricyclic housane 1c. Additional cyclohexane annelation, as in the tetracyclic housane 1a, results in complete loss of stereocontrol through Curtin-Hammett behavior, as substantiated by the viscosity dependence on the product ratio of the rearrangement. Whereas in the radical cations 1b(*+) and 1c(*+) the 1,2-shifts (k(2) and k(3)) are faster than the conformational anti <==> syn change (k(1), k(-1)), the reverse applies for the radical cation 1a(*+). Such structural manipulation of conformational effects in radical cation rearrangements has hitherto not been documented.  相似文献   

18.
The separation and characterization of oligosaccharides obtained by hyaluronidase [E.C. 3.2.1.35] digestion of Escherichia coli K4 polysaccharide using online high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) are presented. Complete identification and structural information for oligosaccharides containing 2-24 monomers (from 2- to 24-mers) were obtained. In particular, smaller K4 species, from 2-mers to 4-mers, exhibited mainly [M-H](-1) anions, whereas the 6- to 8-mers existed predominantly at the charge state of -2. The K4 oligomers from 10-mers to 14-mers were mainly represented by [M-3H](-3) anions while species from 16- to 20-mers were characterized by a charge state of -4. K4 oligosaccharides from 22- to 24-mers existed as [M-4H](-4) and [M-5H](-5) anions and, for this latter species, ions having a charge state of -6 appeared. For smaller K4 species, in particular from 6-mers to 10-mers, ESI-MS revealed anions related to the loss of one monosaccharide unit from the oligomers due to apparent collisional activation and ion source fragmentation. However, no odd-numbered anions were produced for K4 2/4-mer species or for oligosaccharides greater than 12-mers, while for K4 species 8/10-mer, ESI-MS revealed odd-numbered anions generally in low relative abundance making the interpretation of the spectra easier. The ESI-MS spectra of oligosaccharides separated by online HPLC were applied to the evaluation of the K4 polymerization process, confirming that the addition of fructose units is not critical for chain elongation as variously fructosylated oligomer species were detected directly on the K4 carbohydrate backbone.  相似文献   

19.
The low-energy CID mass spectra of the [M-H](-) ions of a variety of dipeptides containing glutamic acid have been obtained using cone-voltage collisional activation. Dipeptides with the gamma-linkage, H-Glu(Xxx-OH)-OH, are readily distinguished from those with the alpha-linkage, H-Glu-Xxx-OH, by the much more prominent elimination of H-Xxx-OH from the [M-H](-) ions of the former isomers, resulting in formation of m/z 128, presumably deprotonated pyroglutamic acid. Dipeptides with the reverse linkage, H-Xxx-Glu-OH, show distinctive fragmentation reactions of the [M-H](-) ions including enhanced elimination of CO(2) and formation of deprotonated glutamic acid. Exchange of the labile hydrogens for deuterium has shown that there is considerable interchange of C-bonded hydrogens with labile (N- and O-bonded) hydrogens prior to most fragmentation reactions. All dipeptides show loss of H(2)O from [M-H](-). MS(3) studies show that the [M-H-H(2)O](-) ion derived from H-Glu-Gly-OH has the structure of deprotonated pyroglutamylglycine while the [M-H-H(2)O](-) ions derived from H-Glu(Gly-OH)-OH and H-Gly-Glu-OH show a different fragmentation behaviour indicating distinct structures for the fragment ions.  相似文献   

20.
Analysis of ethyl 3-(2-chlorophenyl)propenoate by electron ionization mass spectrometry showed the distinct loss of an ortho chlorine. To characterize the structural requisites for the observed mass fragmentation, a series of 30 halogen-substituted 3-phenylpropenoate-related structures were examined. All ester-containing alkene derivatives exhibited loss of the distinctive chlorine from the 2-position of the phenyl ring. Analogous derivatives with the halogen (chlorine or bromine) in the para position did not evidence selective halogen loss. Results demonstrated that substituted 3-phenylpropenoates and their analogs fragment via the formation of a previously reported benzopyrylium intermediate. To understand the correlation between the intramolecular radical substitution and the abundance and selectivity of the chlorine (or other halogen) displacement, density functional theory calculations were performed to determine the charge on the principal cation involved in the chlorine loss (in the ortho, meta, and para positions), the charge for the neutral radical (noncation), the excess alpha-electron density on the relevant atom and the energy to form the cation from the neutral atom (ionization energy). Results showed that the selectivity and extent of halogen displacement correlated highly to the electrophilicity of the radical cation as well as the neutral radical. These data further support the proposed fragmentation mechanism involving intramolecular radical elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号