首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an efficient two-step entanglement concentration protocol (ECP) for three-level atoms trapped in one-sided optical micro-cavities in an arbitrary three-particle less-entangled W state, using the coherent state input-output process in low-Q cavity quantum electrodynamics system. In each step of the new proposed protocol, one of the three remote users prepares the auxiliary coherent optical pulses to perform cavity input-output process and then utilizes the standard homodyne measurement to discriminate the final outgoing coherent states. When both of the two steps are successful, remote parties can deterministically concentrate the less-entangled W state atoms to a standard maximally entangled W state. Compared with previous ECPs for W state, this protocol has some advantages and can be widely used in current quantum repeater and some quantum information processing tasks.  相似文献   

2.
Wei Xiong  Liu Ye 《Optics Communications》2011,284(14):3659-3663
We propose a scheme for generating maximally GHZ state for four atoms trapped in a two-mode optical cavity via combination of cavity QED and linear optics system. The GHZ state can be not only generated deterministically with a single resonant interaction in cavity QED, but also can be prepared probabilistically based on cavity QED and linear optics elements. The fidelity of the entangled states is not affected by the atomic spontaneous, cavity decay, and imperfection of the photon-detectors. Finally, we briefly analyze and discuss the experimental feasibility of the proposed scheme.  相似文献   

3.
We propose a protocol to realize quantum phase gates and generate entangled states between two atoms trapped in one cavity. In Lamb-Dick limits, it is not necessary to require coincidence detections, which will relax the conditions for the experimental realization. The protocol can be generalized to generate N-atom entangled states.  相似文献   

4.
We propose a scheme for realization of three-qubit controlled-phase gate via passing two three-level atoms through a high-Q optical cavity in a cavity QED system. In the presented protocol, the two stable ground states of the atoms act as the two controlling qubits and the zero- and one-photon Fock states of the cavity-field form the target qubit, and no auxiliary state or any measurement is required. The numerical simulation shows that the gate fidelities remain at a high level under the influence of the atomic spontaneous emission, the decay of the cavity mode and deviation of the coupling strength. The experimental feasibility of our proposal is also discussed.  相似文献   

5.
提出了一步变换三原子W态为三原子超单态的方案。在方案中,三个五能级原子同时与双模腔发生离散相互作用。方案的优点是可以有效抵御原子自发辐射和腔衰变引起的消相干的影响。  相似文献   

6.
We propose two relatively robust schemes to generate controllable (deterministic) atomic W states of three Λ-like atoms interacting with an optical cavity and a laser beam. Losses due to atomic spontaneous emissions and to cavity decay are efficiently suppressed by employing adiabatic passage technique and appropriately designed atom-field couplings. In these schemes the three atoms traverse the cavity-mode and the laser beam and become entangled in the free space outside the cavity.  相似文献   

7.
This paper proposes a scheme for realization of a three-qubit Toffoli gate operation using three four-level atoms by a selective atom--field interaction in a cavity quantum electrodynamics system. In the proposed protocol, the quantum information is encoded on the stable ground states of atoms, and atomic spontaneous emission is negligible as the large atom--cavity detuning effectively suppresses the spontaneous decay of the atoms. The influence of the dissipation on fidelity and success probability of the three-qubit Toffoli gate is also discussed. The scheme can also be applied to realize an N-qubit Toffoli gate and the interaction time required does not rise with increasing the number of qubits.  相似文献   

8.
郑雅梅  胡长生  杨贞标  吴怀志 《中国物理 B》2016,25(10):104202-104202
We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom–cavity system's nonlinear Jaynes–Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication.  相似文献   

9.
We investigate the entanglement between two atoms in an overdamped cavity injected with squeezed vacuum when these two atoms are initially prepared in coherent states. It is shown that the stationary entanglement exhibits a strong dependence on the initial state of the two atoms when the spontaneous emission rate of each atom is equal to the collective spontaneous emission rate, corresponding to the case where the two atoms are close together. It is found that the stationary entanglement of two atoms increases with decreasing effective atomic cooperativity parameter. The squeezed vacuum can enhance the entanglement of two atoms when the atoms are initially in coherent states. Valuably, this provides us with a feasible way to manipulate and control the entanglement, by changing the relative phases and the amplitudes of the polarized atoms and by varying the effective atomic cooperativity parameter of the system, even though the cavity is a bad one. When the spontaneous emission rate of each atom is not equal to the collective spontaneous emission rate, the steady-state entanglement of two atoms always maintains the same value, as the amplitudes of the polarized atoms varies. Moreover, the larger the degree of two-photon correlation, the stronger the steady-state entanglement between the atoms.  相似文献   

10.
Considering three two-level atoms initially in the GHZ state, then one atom of them is put into an initially empty cavity and made resonant interaction. It is shown that the emission properties of the atom inside the cavity can be affected only when both of the atoms outside the cavity have been manipulated. This conclusion can also be generalized to n two-level atoms.  相似文献   

11.
《Physics letters. A》2014,378(18-19):1254-1257
We propose a scheme with current technology to implement a quantum delayed-choice experiment in the realm of cavity QED. Our scheme uses two-level atoms interacting on and off resonantly with a single mode of a high Q cavity. At the end of the protocol, the state of the cavity returns to its ground state, allowing new sequential operations. The particle and wave behavior, which are verified in a single experimental setup, are postselected after the atomic states are selectively detected.  相似文献   

12.
Wei Song  Ping Zou 《Optics Communications》2009,282(15):3190-1983
We demonstrate how to perform quantum phase gate with cavity QED system in decoherence-free subspace by using only linear optics elements and photon detectors. The qubits are encoded in the singlet state of the atoms in cavities among spatially separated nodes, and the quantum interference of polarized photons decayed from the optical cavities is used to realized the desired quantum operation among distant nodes. In comparison with previous schemes, the distinct advantage is that the gate fidelity could not only resist collective noises, but also immune from atomic spontaneous emission, cavity decay, and imperfection of the photodetectors. We also discuss the experimental feasibility of our scheme.  相似文献   

13.
We propose a scheme employing quantum-reservoir engineering to controllably entangle the internal states of two atoms trapped in a high-finesse optical cavity. Using laser and cavity fields to drive two separate Raman transitions between stable atomic ground states, a system is realized corresponding to a pair of two-state atoms coupled collectively to a squeezed reservoir. Phase-sensitive reservoir correlations lead to entanglement between the atoms, and, via local unitary transformations and adjustment of the degree and purity of squeezing, one can prepare entangled mixed states with any allowed combination of linear entropy and entanglement of formation.  相似文献   

14.
An intense comb-shaped Raman spectra were obtained from a two-dimensional nonlinear x(2) photonic crystal - a hexagonally poled LiTaO3 crystal with lattice parameter 9 micros. The lowest Raman shift was down to 2 cm^-1 and the order of anti-stokes and stokes signals both achieved 11. The novel Raman spectra were mediated first by intense phonon-polariton fields, which were driven through the quasi-phase-matched coupling between the incident dual-beam both from an optical parametric oscillation laser, and further amplified greatly also by such quasi-phasematched nonlinear optical process. The dependence of the Raman spectra character on the wavelength and intensity of incident beams were studied in detail, which accordingly revealed information of the inelastic scattering and the elementary excitation in the nonlinear medium. These results on the other hand suggest technological importance for developing a novel Raman laser with the multi-wavelength output and a tunable frequency interval and for possible applications in quantum optics.  相似文献   

15.
A large payload quantum steganography protocol based on cavity quantum electrodynamics (QED) is presented in this paper, which effectively uses the evolutionary law of atoms in cavity QED. The protocol builds up a hidden channel to transmit secret messages using entanglement swapping between one GHZ state and one Bell state in cavity QED together with the Hadamard operation. The quantum steganography protocol is insensitive to cavity decay and the thermal field. The capacity, imperceptibility and security against eavesdropping are analyzed in detail in the protocol. It turns out that the protocol not only has good imperceptibility but also possesses good security against eavesdropping. In addition, its capacity for a hidden channel achieves five bits, larger than most of the previous quantum steganography protocols.  相似文献   

16.
We propose a generic approach to nonresonant laser cooling of atoms and molecules in a bistable optical cavity. The method exemplifies a photonic version of Sisyphus cooling, in which the matter-dressed cavity extracts energy from the particles and discharges it to the external field as a result of sudden transitions between two stable states.  相似文献   

17.
An efficient scheme is proposed for the generation of atomic Schrodinger cat states in an optical cavity. Inthe scheme N three-level atoms are loaded in the optical cavity. Raman coupling of two ground states is achieved via alaser field and the cavity mode. The cavity mode is always in the vacuum state and the atoms have no probability ofbeing populated in the excited state. Thus, the scheme is insensitive to both the cavity decay and spontaneous emission.  相似文献   

18.
章文  刘益民  刘俊  张战军 《中国物理 B》2008,17(9):3203-3208
This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.  相似文献   

19.
We report observations of optical superradiant emission and the atomic evolution it drives under conditions closely approximating those originally envisioned in the classic work of Dicke [Phys. Rev. 93, 99 (1954)]. Our experiment involves an optically thin solid sample in a short-lifetime optical cavity whose homogeneous coherence is cryogenically stabilized. Pulsed coherent excitation initiates superradiant emission which subsequently drives the sample to higher or lower states of coherence. Suppression of dephasing via cryogenics and propagation effects through use of an optically thin sample and cavity provides one of the clearest and cleanest examples of Dicke superradiance yet reported.  相似文献   

20.
唐世清  张登玉  汪新文  谢利军  高峰 《中国物理 B》2011,20(4):40308-040308
Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a Λ-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherence from atomic spontaneous emission is negligible due to the fact that the excited states of the atoms are adiabatically eliminated under large detuning condition and the swap gates can be created in a single step. In our schemes, the required atoms-cavity interaction time decreases with the increase of the number of atoms, which is very important in view of decoherence. The experimental feasibilities of the schemes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号