首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrinsic mechanical properties of a given material strongly depend upon its chemical nature: the organics tend to be soft, but tough, while the inorganic materials are hard but brittle and are prone to fracture. The later characteristic gets even worse for porous materials and is of major concern in the microelectronics industry as porous organosilicates (mainly inorganic) will constitute the insulating layers in future electronic devices. In this paper, we demonstrate that significantly tougher organosilicate glass thin-films prepared by sol–gel process, can be obtained by introducing carbon bridging units between silicon atoms present in the organosilicate network. A fracture energy value of 15 J/m2 was measured, surprisingly higher than that for dense silicon dioxide (10 J/m2), suggesting mechanical properties that lie somewhere in between those of conventional glasses and organic polymers. We also found that the Young’s modulus follows a linear decay when porosity is introduced, a unique property when compared to traditional organosilicates. As a result, crack resistant films were obtained at high levels of porosity, opening potential applications in the fields of low-k materials for future integrated circuits, membranes, sensors, waveguides, fuel cells and micro-fluidic channels.  相似文献   

2.
Polysilanes which cover one of the most attractive and challenging fields, are high molecular weight polymers with inorganic elements in their backbone. These materials have silicon atoms in their main chain and exhibit unique properties resulting from the easy delocalization of sigma electrons in the Si─Si bonds. There are many technical uses as well as applications of these materials such as precursors of silicon carbide ceramics; a strengthening agent in porous ceramic; imaging materials in microlithography; photoiniting in radical reactions; and photoconducting, conducting, and semiconducting which are due to the unusual mobility of sigma electrons. In this work, the main structural features, properties, and some other important and recent applications of polysilanes are discussed.  相似文献   

3.
非氧化物陶瓷以优异的综合性能,在冶金、化工、机械、电子等领域有着广阔的应用前景.为了制备出适于烧结的非氧化物陶瓷超细粉体,人们进行了大量的研究工作.本文综述了非氧化物陶瓷超细粉的研究进展,其中涉及机械粉碎法、金属元素反应法、金属氧化物碳热还原(氮化)法、聚合物热解法、气相化学反应法及溶剂热合成法等,并对金属氧化物碳热还原(氮化)法的进展进行了较为详细的描述.  相似文献   

4.
Molybdenum disilicide is a high temperature structural ceramic with many attractive properties for engineering applications. Foremost amongst these is its stability in corrosive atmospheres up to about 1600°C. However, there are a few undesirable properties that need to be addressed before it can become a viable material in high temperature applications. Since MoSi2 forms thermodynamically stable composites with both metals and ceramics, many reinforcing materials are incorporated into the matrix to improve the fracture toughness and creep properties. The low temperature oxidation can be controlled by making high density (> 95% of theoretical density) compacts. This article summarizes the important attempts that are made in improving the properties of molybdenum disilicide-based ceramics by the reinforcement with other materials.  相似文献   

5.
稀土元素具有特殊的电子构型,使其在许多领域得到十分广泛的应用。稀土纳米化将有助于发现新性质、开拓新材料,因此,稀土纳米材料已经成为研究的热点。综述了各种形态稀土纳米材料的制备和性质、稀土纳米材料的复合与组装等方面的进展。  相似文献   

6.
Hydroxyapatite Ca10(PO4)6(OH)2 has attracted widespread interest from both orthopedic and dental fields due to its excellent biocompatibility and tissue bioactivity properties. Since nanophase materials can mimic the dimensions of constituent components of natural tissues, the implants developed from nanophase material could serve as a successful alternative. However, the defects of hydroxyapatite ceramics, mainly brittleness and low fracture toughness, have been overcome by the use of nanophase hydroxyapatite coatings on the implant surfaces that integrate the good mechanical properties of metals and the bioactivity of hydroxyapatite. In the present investigation, Sol?Cgel hydroxyapatite was prepared from two different phosphorus precursors such as triethyl phosphate and phosphorus pentoxide respectively with calcium nitrate tetrahydrate as a calcium precursor. The effects of pH and liquid P31 Nuclear Magnetic Resonance spectroscopy for the solution aged at different periods were investigated and the synthesized hydroxyapatite powder was characterized by Transmission electron microscopy, X-ray Powder Diffraction, Fourier transform infrared spectroscopy and thermal analysis respectively. In order to fully understand the bioactivity of the synthesized materials, they were coated on 316L Stainless Steel implant surface by spin coating method at the spin speed of 2,000 Revolutions per minute. The effect of nanoparticles on the surface of 316L Stainless Steel implant was studied by adhesive strength measurements. The corrosion resistance property of the hydroxyapatite coatings was evaluated by electrochemical impedance analysis. From the results, it was observed that the hydroxyapatite coatings obtained from different precursors have very high resistance to corrosion with higher adhesive strength.  相似文献   

7.
雷璇  魏先文 《化学研究》2006,17(4):86-90
碳纳米管基复合材料具有优良的性能,已在化学、化工、材料、生物、医学等领域受到广泛关注.本文主要综述了功能材料包覆碳纳米管的制备方法及其力学、磁学、光学、电化学等性质,以及当前研究的焦点和存在的问题.  相似文献   

8.
Fluorine has come to be recognized as a key element in materials science: in heat‐transfer agents, liquid crystals, dyes, surfactants, plastics, elastomers, membranes, and other materials. Furthermore, many fluorine‐containing biologically active agents are finding applications as pharmaceuticals and agrochemicals. Progress in synthetic fluorine chemistry has been critical to the development of these fields and has led to the invention of many novel fluorinated molecules as future drugs and materials. As a result of the electronic effects of fluorine substituents, fluorinated substrates and reagents often exhibit unusual and unique chemical properties, which often make them incompatible with established synthetic methods. Thus, the problem of how to control the unusual properties of compounds with fluorine substituents deserves much attention, so as to promote the design of facile, efficient, and environmentally benign methods for the synthesis of valuable organofluorine targets.  相似文献   

9.
Modern synthetic methods for fluorine-substituted target molecules   总被引:1,自引:0,他引:1  
Fluorine has come to be recognized as a key element in materials science: in heat-transfer agents, liquid crystals, dyes, surfactants, plastics, elastomers, membranes, and other materials. Furthermore, many fluorine-containing biologically active agents are finding applications as pharmaceuticals and agrochemicals. Progress in synthetic fluorine chemistry has been critical to the development of these fields and has led to the invention of many novel fluorinated molecules as future drugs and materials. As a result of the electronic effects of fluorine substituents, fluorinated substrates and reagents often exhibit unusual and unique chemical properties, which often make them incompatible with established synthetic methods. Thus, the problem of how to control the unusual properties of compounds with fluorine substituents deserves much attention, so as to promote the design of facile, efficient, and environmentally benign methods for the synthesis of valuable organofluorine targets.  相似文献   

10.
Single-crystal materials, along with other forms of condensed matter (ceramics, polymers, liquid crystals, etc.) are fundamental to modern technology. The basic research and production of new materials with “tailored” solid-state physical properties therefore necessitate not only chemical synthesis but also the production of single crystals of a particular morphology (either bulk or thin layer crystals) and well-defined crystal defects (doping). In this review, an attempt is made to broaden the traditional synthetic concept of chemistry to the process of single-crystal synthesis. The methods of the resulting approach, which takes into account the specific properties of solid materials, are discussed and illustrated by experimental set-ups for the solution of a range of problems in chemical crystallization. Also included is recent work on the growing of single crystals of high-temperature superconductors, organic non-linear optical compounds, and proteins.  相似文献   

11.
Silica aerogels are materials of very high porosity obtained through a sol-gel process. Since their structural properties greatly influence their acoustical and mechanical properties, it is important to follow how the different chemical reactions occur during this process. We present a study of these evolutions for two different types of alcogels through acoustical measurements in the ultrasonic range. These samples have been chosen because of the significantly different behavior of the derived aerogels. The data obtained during gelation show fluctuations of the velocity that can be interpreted in terms of chemical changes. The absence of major changes in the velocity before and after gelation is explained with the aid of Biot's theory of acoustic propagation in porous media.  相似文献   

12.
Plasma polymerization is a well-established process for the deposition of thin polymeric films on various types of substrates. The potential of this technique for promoting changes of substrate’s wettability constitutes one of the most basic and often reported applications. However, as novel technological demands emerge, and with it the range of available characterizations, plasma polymers are having their niche of applications and properties expanded. The properties of these materials are commonly tailored through the variation of polymer chemistry, postfunctionalization, or other post-treatment processes. That chemical versatility allows the use of plasma polymers in adhesives, water treatment, biomedicine, and many other fields. The creation of nanostructures via lithography or during the deposition process itself constitutes other dynamic fields for new plasma polymer materials. In the current review, the design of materials through plasma polymerization is addressed with the direction given by our expertise in maleic anhydride plasma polymers (MAPP). A non-exhaustive number of applications of plasma polymers is provided to non-specialists as an overview of the materials coming out from the field of this chemical-vapor deposition process. A complete analysis of the literature on maleic anhydride plasma polymers is also performed.  相似文献   

13.
Polytetrafluoroethylene (PTFE) has been employed in many engineering applications, mainly due to its special properties such as high electrical resistivity, high melting temperature, chemical inertness, corrosion resistance and very low friction. Although there are many works on PTFE, very few attempts have been made to understand the fracture behavior of this material. For this reason, the load-displacement behavior of double-edge cracked specimens of PTFE was examined and modeled and is reported in this paper. Specimens were tested under monotonic tensile load in quasi-static conditions at constant temperature. Images of the region around the crack were captured with a high-resolution camera and then processed by digital image correlation to obtain the displacement fields. Using these data, values of crack tip opening displacement and crack extension were estimated. To model the behavior of PTFE, a constitutive phenomenological model based on saturation and power law expressions combined with a damage evolution equation is proposed. The predictions are in good agreement with the experimental data.  相似文献   

14.
目前,纳微结构新材料已成为化工过程强化的重要手段之一.金属-有机骨架材料(metal-organic frameworks,MOFs)是由金属离子与有机配体通过配位键自组装而成的新型纳米多孔材料,有望在储气、分离、催化、传感及制药等领域获得广泛应用.本文以MOF材料为例,结合本课题组的工作,介绍了热力学与计算化学在纳微结构材料构效关系研究与设计中的应用.  相似文献   

15.
CO2 removal from flue gas has been proposed as one of the most reliable solutions to mitigate global greenhouse emissions. Lithium ceramics are among several materials that have potential applications in CO2 removal. Lithium ceramics are able to chemisorb CO2 in a wide temperature range, presenting several interesting properties. All lithium ceramics present a similar CO2 chemisorption reaction mechanism that has been described at the micrometric scale. However, there are several issues that have not been fully elucidated. The aim of this study is to re-analyze different experiments related to the CO2 chemisorption on lithium ceramics and to propose how different factors control this process. This study focuses on diffusion controlled CO2 chemisorption, which has been shown to be the limiting step of the CO2 chemisorption process. Diffusion controlled CO2 chemisorption appears to be mainly influenced by the chemical composition of a product’s external shell.  相似文献   

16.
In this article we present three diverse applications of first-principles simulations to problems of materials chemistry and chemical physics. Their common characteristic is that they are essentially problems of the relationships among atomic structures and the properties they promote in real materials and real applications. The studies are on transition-metal oxide surface chemistry, the reactivity and electronic structure of sp(2)-bonded carbon systems, and defects and electrochromic properties in WO(3). In these demanding applications we must have concern for how realistic our model systems are and how well current implementations of DFT perform, and we comment on both.  相似文献   

17.
卟啉是一类重要的大环化合物,广泛存在于自然界和生命体中,具有广泛的应用。 由于自由卟啉化合物的化学稳定性差,天然卟啉通常在特定的天然大分子(多肽)环境中发挥其特性,因此,人们研究开发了多种担体,固载化卟啉和金属卟啉,大大拓展了其应用范围。 本文综述了文献报道的卟啉及金属卟啉的常用固载载体、常用的固载方法、以及固载型卟啉化合物在催化和传感器等领域的最新应用进展,展望了卟啉的固载化和固载型卟啉的应用前景。  相似文献   

18.
GaN and related compounds are very promising materials for developing short wavelength light emitting devices, such as laser diode (LD) and light emitting diode (LED), high temperature and high power electronics. Commercially used nitride materials have been made by vapor phase epitaxy (VPE), including metalorganic vapor phase epitaxy (MOVPE) and hydride vapor phase epitaxy (HVPE). MOVPE is a widely used technique to fabricate semiconductor films. Its precise control of growth process, ability of handling multi large area wafers, and excellent reproducibility make it valuable in large-scale production of electronic and optoelectronic devices. VPE of nitrides has met several critical materials issues. Firstly, a high vapor pressure of nitrogen leads to the lack of bulk crystal of GaN. People have to use heteroepitaxy technique to produce GaN materials and devices, which makes high-density defects in GaN epilayers. Secondly, the high bonding energy of GaN and high stability of NH3 require a high growth temperature. The high nitrogen vapor pressure at high growth temperature requires enhanced local precursor densities. Additionally, the growth chemistry of VPE of nitride materials is very complicated. Parasitic chemical reactions take place during the VPE growth and degrade the material quality. Finally, the physical process of VPE growth has not been well understood. Optimized production of nitride material is predicated on an understanding of how the film properties are affected by the initial processing sequence. Heteroepitaxy of nitrides is strongly influenced by the initial nucleation and growth sequence.  相似文献   

19.
金刚石薄膜电化学   总被引:7,自引:0,他引:7  
金刚石由于其特殊的物理与化学性质,早在几百年前就吸引了人们对它的关注.化学气相沉积(chemical vapor deposition,CVD)法制备的高掺杂硼复合多晶金刚石薄膜,为金刚石薄膜在电化学中的应用开辟了新的领域.作为新型碳素电极材料,高掺杂硼复合多晶金刚石薄膜具有许多目前使用的电极材料所不可比拟的优异特性如:宽电化学势窗,低残留电流,极好的电化学稳定性以及表面不易被污染等.本文综述了高掺杂硼复合多晶金刚石薄膜电极在电化学中的几个重要应用,包括电分析、电合成及电化学法处理废水等.  相似文献   

20.
In addition to the barrier properties against water vapor and oxygen, inorganic-organic polymers can also function as protection layers against unwanted migration of chemical substances in two ways. First, hybrid polymers prevent components from migrating out of polymer substrates. This is of special interest for polymeric materials containing substances like plasticizing agents, unreacted monomers or catalysts. Thus the olfactory nuisance and the toxicological emission are decreased. The plastics are also prevented from becoming prematurely brittle. Second, the coated materials are also protected against the interaction of dyes or dirt staining the material.These functions can be achieved by thermally or UV curable coating materials, synthesized by the sol-gel technique. Since several polymer materials show only a low heat resistance (e.g. PVC, polyolefines), this publication is focussed on the development of new migration barriers based on photochemically curable sols.Another advantage of the UV process in comparison to thermal treatments are the short curing times and low power consumption which make this process even more attractive for industrial applications. The coatings were characterized by IR and solid state NMR spectroscopy. The migration barrier properties were tested according to industrial standards.Due to the choice of specific functional groups, these hybrid polymers can be further modified in order to combine the migration barrier function with additional properties: scratch and abrasion resistance, hydrophobicity, antistatic effects. Examples of feasible combinations of properties are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号