首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept and some first results of a method are described for evaporating large volumes of solvent in a relatively short pre-column (retention gap) in such a way that solvent trapping retains volatile components in the inlet up to completion of solvent evaporation. The method was developed for transferring large volumes (easily exceeding 1 ml) of HPLC eluent to GC when using on-line coupled HPLC-GC, but is equally suited for injecting large sample volumes (at least some 50 μl) and could be particularly useful for introducing aqueous solutions. Concurrent solvent evaporation allows introduction of very large volumes of liquid into GC. However, peaks eluted up to some 40–80° above the column temperature during introduction of the liquid are strongly broadened due to the absence of solvent trapping. On the other hand, previous retention gap techniques involving solvent trapping were not suited for transferring very large volumes of liquid into GC. Using a relatively high boiling co-solvent added to the sample or the HPLC eluent, advantages of concurrent solvent evaporation can be combined with solute reconcentration by solvent effects, allowing elution of sharp peaks starting at the column temperature during introduction of the sample.  相似文献   

2.
Concurrent solvent evaporation is suited for coupled HPLC-HRGC if solutes elute at intermediate to high column temperatures—otherwise retention gap techniques are more appropriate. Concurrent eluent evaporation using a loop-type interface requires that the GC oven temperature during eluent introduction be above the eluent boiling point at the carrier gas inlet pressure applied. An experimental background is given for facilitating selection of the appropriate column temperature.  相似文献   

3.
Introduction of solutions of up to several milliliters by on-column injection of large volumes or by coupled HPLC-GC may cause problems with GC detectors (FID, AFID, MS). For instance, dichloromethane forms large amounts of hydrochloric acid and carbon black in FIDs. A column effluent splitter was developed for keeping the major portion of the solvent vapors away from the detector; approximately 99% of the vapor is vented while the remaining 1% of vapor is used for detecting the widths of the solvent peaks. During analysis, the split ratio is reversed by a strong increase of the resistance to the gas flow through the split exit line. The system was used for the determination of di-(2-ethylhexyl)-phthalate (DEHP) in triglyceride matrices of various foods. Direct determination by HPLC is not sufficiently sensitive, whereas direct analysis by GC is hindered by the triglycerides. Solutions of fats or oils were pre-separated on a silica column using dichloro-methanelcyclohexane 1:l with addition of 0.05 % acetonitrile as eluent. The HPLC fraction containing the DEHP was transferred to GC through a loop-type interface using concurrent solvent evaporation. Detection limits were around 0.1 ppm.  相似文献   

4.
Presently, two coupling techniques are used for directly introducing HPLC fractions into capillary GC: The retention gap technique (involving negligible or partially concurrent solvent evaporation) and fully concurrent solvent evaporation. While the former involves use of a conventional on-column injector, it is now proposed that concurrent solvent evaporation technique be carried out using a switching valve with a built-in sample loop. The technique is based on the concept that the carrier gas pushes the HPLC eluent into the GC capillary against its own vapor pressure, generated by a column temperature slightly exceeding the solvent boiling point at the carrier gas inlet pressure. Further improvement of the technique is achieved by flow regulation of the carrier gas (accelerated solvent evaporation) and backflushing of the sample valve (improved solvent peak shape). Concurrent solvent evaporation using the loop-type interface is easy to handle, allows transfer of very large volumes of HPLC eluent (exceeding 1 ml), and renders solvent evaporation very efficient, allowing discharge of the vapors of 1 ml of solvent through the column within 5–10 min.  相似文献   

5.
Two-dimensional chromatography of gasoline by on-line coupled HPLC-HRGC, as described in this paper, allows separate GC analysis of paraffins and aromatics. The GC system contains a retention gap of only 10 m length for introducing HPLC fractions of 100 μl volume. This becomes possible through evaporation of part of the solvent during introduction of the HPLC eluent. This “partially concurrent solvent evaporation” technique allows transfer of large volumes of HPLC eluent into relatively short retention gaps, maintaining the full efficiency of the solvent effects in reconcentrating the bands of the early eluted solutes.  相似文献   

6.
HPLC fractions involving eluents of low to intermediate polarity can be introduced into capillary GC using the retention gap technique. Partial or complete solvent evaporation during sample introduction reduces the length of, or almost eliminates, the zone in the column inlet (retention gap) flooded by the introduced liquid, allowing introduction of larger HPLC fractions and/or use of shorter retention gaps. The corresponding techniques are reviewed. The retention gap technique is poorly suited for water-containing HPLC eluents (reversed phase HPLC) and fails completely if HPLC eluents contain, e.g., buffer salts. Various techniques for extracting such HPLC eluents are considered, preference being given to extraction into GC stationary phases from where solutes are thermally desorbed into the GC separation column. Limiting factors are diffusion of solutes within the liquid phase to be extracted and retention power of the extraction tubes.  相似文献   

7.
在线高效液相色谱-毛细管气相色谱联用方法的建立   总被引:2,自引:0,他引:2  
陈吉平  黄威东  张乐沣  田玉增 《色谱》1997,15(3):222-224
建立了一种以保留间隙柱技术和阀切换以及定量管样品转移为接口并具有早期溶剂蒸气出口的在线液相色谱与毛细管气相色谱联用方法。考察了主要实验条件,如溶剂蒸发温度、载气压力等对联机系统性能的影响,并用萘和联苯对该系统的线性范围进行了测定。利用联机系统对一种轻柴油样品进行了分析。  相似文献   

8.
Co-solvent effects are applied to allow use of concurrent solvent evaporation for applications requiring analysis of compounds eluted less than some 50° above the column temperature during sample introduction, i.e. at oven temperatures below some 100–120°C. Required conditions such as GC even temperature, concentration of the co-solvent and length of the uncoated pre-column (retention gap) are studied theoretically as well as experimentally for the case of n-heptane as co-solvent in n-pentane.  相似文献   

9.
Temperature measurements on the column outer well were used for detecting recondensation or evaporation of solvent inside the precolumn during injection or on-line transfer of large solvent volumes. This facilitates the choice of the most critical parameter of these techniques, i.e. oven temperature. When using the vaporizer/precolumn solvent split/gas discharge system, the dew point of the solvent is determined, either to just prevent solvent recondensation or to limit it to the capacity of the precolumn to retain liquid. In concurrent eluent evaporation through the loop type LC-GC interface, temperature measurement enables the determination of whether or not the flooded zone exceeds a given limit. Fanally, when solvent trapping is used (on-column injector/partially concurrent solvent evaporation evaporation or vaporizer/partial recondensation), temperature measurement near the front end of the flooded zone is used as a signal for accurate closure of the vapor exit shortly before the end of solvent evaporation.  相似文献   

10.
Use of early solvent vapor exits for concurrent eluent evaporation with the loop-type interface has two purposes: protection of the GC detectors from large amounts of solvent vapors and more efficient discharge of the vapors to accelerate eluent evaporation and help avoiding broad solvent peaks. Use of a retaining pre-column after the uncoated pre-column can rule out losses of solute materials that form sharp peaks.  相似文献   

11.
Concurrent solvent evaporation with a loop-type interface was used for on-line HPLC-CGC in the analysis of methylated dibenzothiophene (DBT) isomers in oil samples. The chromatographic behavior of 20 methyl DBT's was studied by HPLC on an aminopropylsilane DBTA phase and by GC on a selective methyl-phenylsilicone phase. That provided a method for analyzing by GC-flame photometric detection, the individual components of the DBT family, previously picked out of the crude oil matrix by HPLC. The GC oven temperature was shown to be critical during HPLC eluent introduction into the GC pre-column. Too high a temperature induced a severe broadening of early eluted peaks whereas a temperature too close to the boiling point of the liquid at the inlet pressure induced double peaks. Optimized conditions were retained on this basis and may be used for the analysis of other families of polyaromatic hydrocarbons.  相似文献   

12.
The on-line coupled LC-GC technique was applied to the analysis of several metal chelates of N,N-diethyldithiocarbamic acid. A 10-port valve interface was used to couple the LC and GC instruments. Conditions during sample transfer into the GC gave fully concurrent solvent evaporation. The chelates investigated were separated with a short apolar fused silica column. LC preseparation was made with cyano or amino phases using a hexane/dichloromethane mixture as eluent. On-line LC-GC combination seems to be very suitable for the separation of the metal chelates studied.  相似文献   

13.
Partially concurrent eluent evaporation presupposes an eluent evaporation rate in the GC pre-column that approaches the LC flow rate. Discharging the vapors through the whole GC column, evaporation rates reach 10–30 μl/min, i.e. are suitable just for LC flow rates typical for packed capillary LC columns. With an early vapor exit, evaporation rates are increased to 100–200 μl/min (under extreme conditions to some 800 μl/min), thus fitting the LC flow rates of 2 mm i.d. columns. Evaporation rates were measured for a standard set of pre-columns and conditions. The dependence of the evaporation rate on temperature, inlet pressure, carrier gas, and internal diameter of the retaining pre-column are discussed in order to allow the design of a GC system producing a desired evaporation rate.  相似文献   

14.
For the analysis of broxaterol 1-(3-bromoisoxazol-5-yl)-2-(tert-butylamino)ethanol in human plasma and urine an on-line HPLC-GC apparatus was used applying the “concurrent solvent evaporation” technique described in previous studies. Broxaterol is quantitatively determined by capillary GC with ECD detection, after extraction from plasma and derivatization. The detection limit of 0.03 ng/ml permits pharmacokinetic studies in man after oral and intravenous administration of the drug.  相似文献   

15.
The mobile phase of a fraction eluted from a first LC column is removed by an on-line evaporator in order to reconcentrate the solute material or to exchange the eluent before performing a subsequent LC separation. Evaporation essentially occurs by concurrent evaporation, i.e. the solvent evaporates at a rate equal to the flow rate of the incoming eluent, and is driven by the overflow principle, i.e. vapors leave the tube as a result of the expansion resulting from evaporation. The liquid is introduced into a small tube (e.g., 4 cm × 1.3 mm i.d.) which is packed, e.g., with a coarse silica gel. The outlet of the evaporator is connected to vacuum in order to enable evaporation at reduced temperature and to increase retention of the volatile components. With normal phase eluents, evaporation rates may approach 1 ml/min; n-dodecane was the most volatile n-alkane fully retained by the evaporator.  相似文献   

16.
A fully automated on-line HPLC-HRGC instrument is described. Samples are loaded into an HPLC autosampler. Pre-separation is carried out, automatically transferring the previously determined HPLC fraction to GC. Total HPLC fractions are introduced into GC, using the on-column or the loop-type interface, depending on the solvent evaporation technique applied. The HPLC column is automatically backflushed with a suitable solvent during GC analysis. The instrument was used for analyzing heroin metabolites, particularly morphine, in urine samples. Raw urine extracts were injected into HPLC and analyzed by GC using FID.  相似文献   

17.
The combination of high performance liquid chromatography interfaced on-line with multidimensional gas chromatography (HPLC–GC–GC) is described. The HPLC column was interfaced to the GC via an on column interface, with automated pneumatic control of solvent evaporation and GC column switching. Cryogenic cold trapping was used for analyte focusing at the head of the first, non-polar GC capillary column and optionally at the head of the second, polar column. The determination of stilbene hormones in corned beef as their methylated derivatives by flame ionization detection is described.  相似文献   

18.
Solvent compatibility is a limiting factor for the success of two-dimensional liquid chromatography (2-D LC). In the second dimension, solvent effects can result in overpressures as well as in peak broadening or even distortion. A peak shape study was performed on a one-dimensional high-performance liquid chromatography (HPLC) system to simulate the impact of peak distorting solvent effects on a reversed-phase second dimension separation operated at high temperatures. This study includes changes in injection volume, solute concentration, column inner diameter, eluent composition and oven temperature. Special attention was given to the influence of high temperatures on the solvent effects. High-temperature HPLC (HT-HPLC) is known to enhance second dimension separations in terms of speed, selectivity and solvent compatibility. The ability to minimise the viscosity contrast between the mobile phases of both dimensions makes HT-HPLC a promising tool to avoid viscosity mismatch effects like (pre-)viscous fingering. In case of our study, viscosity mismatch effects could not be observed. However, our results clearly show that the enhancement in solvent compatibility provided by the application of high temperatures does not include the elimination of solvent strength effects. The additional peak broadening and distortion caused by this effect is a potential error source for data processing in 2-D LC.  相似文献   

19.
This paper describes the use of coupled LC-GC for the determination of organochlorine pesticide residues in fat samples. Organochlorine pesticide residues are preseparated from fat by LC on a short C-18 column using an organic solvent as the mobile phase. Evaporation of the LC eluent is achieved by a modified on-column interface, introducing an on-line vaporizer module using the fully concurrent evaporation technique.  相似文献   

20.
An on-line coupling of size-exclusion Chromatography (SEC), normal-phase liquid Chromatography (NPLC), and gas Chromatography (GC) for the characterization of complex hydrocarbon mixtures is described. The hyphenated system separates according to size, polarity, and boiling point. The use of size exclusion as the first separation step allows for the direct injection of complex (“dirty”) samples withont prior clean-up. SEC-NPLC coupling was realized using an on-line solvent evaporator based on fully concurrent solvent evaporation (FCSE) using a modified loop-type interface, vapor exit and co-solvent trapping. Complete reconcentration of the analytes was realized by the introduction of a cryogenic cold trap. For the subsequent hydrocarbon group-type separation an ammo-silica column with n-heptane as eluent was used. The NPLC-GC coupling was based on an on-column interface using partially concurrent solvent evaporation (PCSE) and an early vapor exit. Initial results obtained on the analysis of a residue from the atmospheric crude-oil distillation (a so-called long residue) are presented as an example of the enormous separation power of the SEC-NPLC-GC system. The application of the system for quantitative analysis has not yet been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号