首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Diazotization of α-amino acids in 48:52 (w/w) hydrogen fluoride/pyridine along with excess of potassium halide results in the corresponding α-halocarboxylic acids in good to excellent yields (Table 1 and 2).  相似文献   

4.
5.
Oligomers of leucine, methionine, phenylalanine, and tyrosine were prepared enzymatically (using papain) from the respective methyl esters, with yields ranging from 51–96%. The effect of pH, buffer and salt concentration, and addition of alcohol on the oligomerization of leucine methyl ester was examined. The limits and potentialities of the enzymatic reaction as a method for obtaining monodisperse oligomers are discussed.  相似文献   

6.
7.
8.
Enantioselective synthesis of optically active α-amino acids from glycine via Schiff base employing (+)-N,N-diisopropyl-10-camphorsulfonamide as a chiral template is described.  相似文献   

9.
The preparation of novel electrophilic building blocks for the synthesis of enantiomerically pure compounds (EPC) is described. Thus, the 2-(tert-butyl)dioxolanones, -oxazolidinones, -imidazolidinones, and -dioxanones obtained by acetalization of pivalaldehyde with 2-hydroxy-, 3-hydroxy-, or 2-amino-carboxylic acids are treated with N-bromosuccinimide under typical radical-chain reaction conditions (azoisobuytyronitril/CCl4/reflux). Products of bromination in the α-position of the carbonyl group of the five-membered-ring acetals are isolated or identified ( 2, 5 , and 8 ; Scheme 1). The dioxanones are converted to 2H, 4H-dioxinones under these conditions ( 12 , 14 , 15 , 21 , and 22 ; Schemes 2 and 3). The products can be converted to chiral derivatives of pyruvic acid (methylidene derivatives 3 and 6 ) or of 3-oxo-butanoic and -pentanoic acid ( 16 and 23 ). The mechanism of the brominations is interpreted. The conversion of serine to enactiomcrically pure dioxanones 26–28 (Scheme 4) is also discussed.  相似文献   

10.
11.
12.
α-Isobutyl-L -aspartate oligomers, Z-(α-i-Bu-Asp)2n–OEt (n = 1–5), where Z = benzyloxycarbonyl and OEt = ethyl ester, were prepared stepwise, and their conformation in solution was investigated by optical rotation, circular dichroism (CD), and NMR spectroscopy. The oligomers up to hexamer existed only in a disordered form. An ordered structure began to appear at octamer and decamer in chloroform and 2,2,2-trifluoroethanol. The ordered structure was more favorable for N-unprotected oligomers, H-(α-i-Bu-Asp)2n–OEt, in comparison with the corresponding Z-(α-i-Bu-Asp)2n–OEt. The effects of oligomer concentration and temperature on the structure were slightly observed. The most likely ordered structure was a β form caused by intramolecular association.  相似文献   

13.
A new route to completely protected α-methylated α-amino acids starting from alanine is described (see Scheme). These derivatives, which are obtained via base-catalyzed opening of the oxazolidinones (2S,4R)- and (2R,4S)- 2 , can be directly employed in peptide synthesis. The synthesis of both enantiomers of Z-protected α-methylaspartic acid β-(tert-butyl)ester (O4-(tert-butyl) hydrogen 2-methylaspartates (R) or (S)- 4a ), α-methyl-glutamic acid γ-(tert-butyl) ester (O5-(tert-butyl) hydrogen 2-methylglutamate (R)- or (S)- 4b ), and of Nε-bis-Boc-protected α-methyllysine (N6,N6-bis[(tert-butyloxy)carbonyl]-2-methyllysine (R)- or (S)- 4c ) is described in full detail.  相似文献   

14.
We report on the synthesis of new and previously described β-peptides ( 1 – 6 ), consisting of up to twelve β2,2- or β3,3-geminally disubstituted β-amino acids which do not fit into any of the secondary structural patterns of β-peptides, hitherto disclosed. The required 2,2- and 3,3-dimethyl derivatives of 3-aminopropanoic acid are readily obtained from 3-methylbut-2-enoic acid and ammonia (Scheme 1) and from Boc-protected methyl 3-aminopropanoate by enolate methylation (Scheme 2). Protected (Boc for solution-, Fmoc for solid-phase syntheses) 1-(aminomethyl)cycloalkanecarboxylic-acid derivatives (with cyclopropane, cyclobutane, cyclopentane, and cyclohexane rings) are obtained from 1-cyanocycloalkanecarboxylates and the corresponding dihaloalkanes (Scheme 3). Fully 13C- and 15N-labeled 3-amino-2,2-dimethylpropanoic-acid derivatives were prepared from the corresponding labeled precursors (see asterixed formula numbers and Scheme 4). Coupling of these amino acids was achieved by methods which we had previously employed for other β-peptide syntheses (intermediates 18 – 23 ). Crystal structures of Boc-protected geminally disubstituted amino acids ( 16a – d ) and of the corresponding tripeptide ( 23a ), as well as NMR and IR spectra of an isotopically labeled β-hexapeptide ( 2a* ) are presented (Figs. 1 – 4) and discussed. The tripeptide structure contains a ten-membered H-bonded ring which is proposed to be a turn-forming motif for β-peptides (Fig. 2).  相似文献   

15.
16.
17.
N-Fmoc-Protected (Fmoc = (9H-fluoren-9-ylmethoxy)carbonyl) β-amino acids are required for an efficient synthesis of β-oligopeptides on solid support. Enantiomerically pure Fmoc-β3-amino acids β3: side chain and NH2 at C(3)(= C(β)) were prepared from Fmoc-protected (S)- and (R)-α-amino acids with aliphatic, aromatic, and functionalized side chains, using the standard or an optimized Arndt-Eistert reaction sequence. Fmoc-β2- Amino acids (β2 side chain at C(2), NH2 at C(3)(= C(β))) configuration bearing the side chain of Ala, Val, Leu, and Phe were synthesized via the Evans' chiral auxiliary methodology. The target β3-heptapeptides 5–8 , a β3- pentadecapeptide 9 and a β2-heptapeptide 10 were synthesized on a manual solid-phase synthesis apparatus using conventional solid-phase peptide synthesis procedures (Scheme 3). In the case of β3-peptides, two methods were used to anchor the first β-amino acid: esterification of the ortho-chlorotrityl chloride resin with the first Fmoc-β-amino acid 2 (Method I, Scheme 2) or acylation of the 4-(benzyloxy)benzyl alcohol resin (Wang resin) with the ketene intermediates from the Wolff rearrangement of amino-acid-derived diazo ketone 1 (Method II, Scheme 2). The former technique provided better results, as exemplified by the synthesis of the heptapeptides 5 and 6 (Table 2). The intermediate from the Wolff rearrangement of diazo ketones 1 was also used for sequential peptide-bond formation on solid support (synthesis of the tetrapeptides 11 and 12 ). The CD spectra of the β2- and β3-peptides 5 , 9 , and 10 show the typical pattern previously assigned to an (M) 31 helical secondary structure (Fig.). The most intense CD absorption was observed with the pentadecapeptide 9 (strong broad negative Cotton effect at ca. 213 nm); compared to the analogous heptapeptide 5 , this corresponds to a 2.5 fold increase in the molar ellipticity per residue!  相似文献   

18.
19.
20.
The heterospirocyclic N-methyl-N-phenyl-2H-azirin-3-amines (3-(N-methyl-N-phenylamino)-2H-azirines) 1a - d with a tetrahydro-2H-thiopyran, tetrahydro-2H-thiopyran, and a N-protected piperidine ring, respectively, were synthesized from the corresponding heterocyclic 4-carboxamides 2 by consecutive treatment with lithium diisopropylamide (LDA), diphenyl phosphorochloridate (DPPCI), and sodium azide (Scheme 4). The reaction of these aminoazirines with thiobenzoic acid in CH2Cl2 at room temperature gave the thiocarbamoyl-substituted benzamides 13a - d in high yield. The azirines 1a-d were used as synthons for heterocyclic α-amino acids in the preparation of tripeptides of the type Z-Aib-Xaa-Aib-N(Ph)Me ( 18 ) by following the protocol of the ‘azirine/oxazolone method’: treatment of Z-Aib with 1 to give the dipeptide amide 15 , followed by selective hydrolysis to the corresponding acid 16 and coupling with the 2,2-dimethyl-2H-azirin-3-amine 17 gave 18 , again in high yield (Scheme 5). With some selected examples of 18 , the selective deprotection of the amino and the carboxy group, respectively, was demonstrated (Scheme 6). The solid-state conformations of the protected tripeptides 18a - d , as well as that of the corresponding carbocyclic analogue 18e , were determined by X-ray crystallography (Figs. 1-3 and Tables 1-3). All five tripeptides adopt a β-turn conformation of type III or III′. The solvent dependence of the chemical shifts of the NH resonances (Fig. 6) suggests that there is an intramolecular H-bond between H-N(4) and O(11) in all cases, which is an indication that a relatively rigid β-turn structure also persists in solution. Surprisingly, the tripeptide acid 20a shows no intramolecular H-bond in the crystalline state (Fig. 7); O(11) is involved in an intermolecular H-bond with the OH group of the carboxy function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号