首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A novel method for synthesizing maleated ionomer of (styrene‐butadiene‐styrene) triblock copolymer (SBS) from epoxidized SBS was developed. The epoxidized SBS was prepared via epoxidation of SBS with performic acid formed in situ by 30% H2O2 and formic acid in cyclohexane in the presence of polyethylene glycol 600 as a phase transfer catalyst. The maleated ionomer was obtained by a ring‐opening reaction of the epoxidized SBS solution with an aqueous solution of potassium hydrogen maleate. The optimum conditions for the ring‐opening reaction and some properties of the ionomers were studied. It is necessary to use phase transfer catalyst, ring‐opening catalyst and a pH regulator (dipotassium maleate) for obtaining the epoxy group conversion over 90%. The product was characterized by FTIR spectrophotometry and transmission electron microcroscopy (TEM) to be an ionomer with domains of maleate ionic groups. With increasing ionic groups, the water absorbency and the dilute solution viscosity of the ionomer increase, whereas the oil absorbency decreases. The tensile strength and ultimate elongation of ionomers increase with ionic group content and are higher than those of the original SBS without using any ionic plasticizer, which is usually used with the sulfonated ionomer. The ionomers with 1.2–1.7 mmol ionic groups/g exhibit optimum mechanical properties and behave as thermoplastic elastomers. The ionomer can be used as a compatibilizer for the blends of SBS with oil resistant chlorohydrin rubber (CHR). Addition of 3 wt% ionomer to the blend can increase the tensile strength and ultimate elongation of the blend optimally. The compatibility of the blends enhanced by adding the ionomer was shown by scanning electron microscopy (SEM). The blend of equal weight of SBS and CHR compatibilized by the ionomer behaves as a toluene resistant thermoplastic elastomer.  相似文献   

2.
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.  相似文献   

3.
Due to the poor impact behavior of polypropylene (PP) at low temperatures, blending PP with an elastomeric phase is a common way to improve some of the characteristic quantities. The property profile of thermoplastic elastomers strongly depends on the content of the elastomeric component. For applications under dynamic loading conditions, the corresponding material behavior is of importance. In order to reduce long testing times with constant amplitude loading, the hysteresis measurement method, which evaluates the hysteresis loop and makes use of a stepwise load increase procedure (SLIP), was developed. Binary blends based on PP were compounded with either ethylene-propylene-dien-rubber (EPDM), metallocene polymerized polyethylene (mPE), or styrene-ethylene-butylene-styrene block copolymer (SEBS) as the elastomeric phase. Static and dynamic tests under tensile and pressure conditions were performed in order to evaluate the influence of the type of elastomeric phase on the properties of these blends. It is shown how the hysteresis measurement method can be used to determine dynamic load limits for the application of these blends and of other polymers. Some properties improved slightly when using mPE.  相似文献   

4.
Polylactide (PLA) being a very brittle biopolymer could be toughened by blending with thermoplastic elastomers such as thermoplastic polyurethane elastomer (TPU) and thermoplastic polyester elastomer (TPE); unfortunately, these blends are immiscible forming round domains in the PLA matrix. Therefore, the purpose of this study was to investigate the effects of using maleic anhydride (MA) compatibilization on the toughness and other properties of PLA blended with TPU and TPE. MA grafting on the PLA backbone (PLA‐g‐MA) was prepared separately by reactive extrusion and added during melt blending of PLA/thermoplastic elastomers. IR spectroscopy revealed that MA graft might interact with the functional groups present in the hard segments of TPU and TPE domains via primary chemical reactions, so that higher level of compatibilization could be obtained. SEM studies indicated that PLA‐g‐MA compatibilization also decreased the size of elastomeric domains leading to higher level of surface area for more interfacial interactions. Toughness tests revealed that Charpy impact toughness and fracture toughness (KIC and GIC) of inherently brittle PLA increased enormously when the blends were compatibilized with PLA‐g‐MA. For instance, GIC fracture toughness of PLA increased as much as 166%. It was also observed that PLA‐g‐MA compatibilization resulted in no detrimental effects on the other mechanical and thermal properties of PLA blends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The influence of the morphology on the mechanical properties of binary styrene–butadiene (SB) triblock copolymer blends of a thermoplastic block copolymer and a thermoplastic elastomer (TPE) with different molecular architectures was studied with bulk samples prepared from toluene. Both block copolymers contained SB random copolymer middle blocks, that is, the block sequence S–SB–S. The two miscible triblock copolymers were combined to create a TPE with increased tensile strength without a change in their elasticity. The changes in the equilibrium morphology of the miscible triblock copolymer blends as a function of the TPE content (lamellae, bicontinuous morphology, hexagonal cylinders, and worms) resulted in a novel morphology–property correlation: (1) the strain at break and Young's modulus of blends with about 20 wt % TPE were larger than those of the pure thermoplastic triblock copolymer; (2) at the transition from bicontinuous structures to hexagonal structures (~35 wt % TPE), a change in the mechanical properties from thermoplastic to elastomeric was observed; and (3) in the full range of wormlike and hexagonal morphology (60–100 wt % TPE), elastomeric properties were observed, the strength greatly increasing and high‐strength elastomers resulting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 429–438, 2005  相似文献   

6.
The solubility, polarity, compatibility of the components of dynamically vulcanized thermoplastic elastomers: natural rubber, polypropylene, and layered filler, which determine the composition and properties of composites were computed. On the basis of calculations components for dynamic thermoplastic composites were selected and composite materials with improved physical and mechanical properties were developed.  相似文献   

7.
This paper provides some new insights into the mechanism of interaction and modifications in thermoplastic composites based on low density polyethylene (LDPE), ground tire rubber (GTR) and non-polar elastomer. The composites were prepared using a co-rotating twin-screw extruder at variable LDPE/GTR ratio and constant elastomer content. Two types of commercial elastomer were applied: styrene-butadiene-styrene (SBS) block copolymers (Kraton®) with different topologies (linear/branched) and partially cross-linked butyl rubbers (Kalar®) with different Mooney viscosities. Processing characteristics, static mechanical properties (tensile strength, elongation at break, hardness), dynamic mechanical properties, thermal properties and morphology of the resulting thermoplastic composites were investigated. Microstructure analysis shows that modification of LDPE/GTR composites with non-polar elastomers caused encapsulation of GTR particles within the elastomer phase. This phenomenon has significant influence on macro-behavior of thermoplastic composites based on LDPE/GTR blends. The results indicate that SBS copolymer improves interfacial interactions between GTR and LDPE, which enhances mechanical and thermal properties of the composites. On the other hand, cross-linked butyl rubber showed partial compatibility with LDPE and low compatibility with GTR particles.  相似文献   

8.
Raman spectroscopy including mapping technique appears as a powerful technique for the characterization of polymer blends like thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs). The Raman spectra of polymers blends such as natural rubber/polypropylene (NR/PP) and 65% hydrogenated natural rubber/polypropylene (65%HNR/PP) were identified and the phase distribution was determined. The study was driven for the same type of blends in TPEs state and TPVs state obtained after to 2 different processes, either peroxide cure or sulfur cure. The morphology of TPEs and TPVs obtained by Raman spectroscopy were compared and confirmed using scanning electronic microscopy.Raman mapping shows that the phase morphology of NR/PP, 65%HNR/PP, were characterized as continuous rubber phase morphology of the thermoplastic elastomers (TPEs) and a fine dispersion of cross-linked rubber phase in a continuous matrix of the thermoplastic vulcanizates (TPVs). Raman spectroscopy is demonstrated to be a reference to determine the content ratio of each component in the TPVs. Moreover, Raman mapping could be used to calculate the phase size of cross-linked rubber phase dispersed in the thermoplastic vulcanizates (TPVs).  相似文献   

9.
本文阐述了橡胶微粒对热塑性树脂的增韧机理,以及核-壳弹性体对塑料共混物性能的影响。其目的是为合成抗冲改性用核-壳弹性体提供参考。  相似文献   

10.
The bulk mechanical properties of a blend of elastomers are found to depend on the micro and nano scale morphology of the phases of the materials in the blend. In this study, we examine the phase morphology of blends of incompatible elastomers using Atomic Force Microscopy (AFM). Specifically, nanoindentation and Tapping Mode AFM (TMAFM) imaging techniques are used as experimental tools for mapping the composition of unfilled elastomeric blends. Depending on the composition of the blend, either co‐continuous or discontinuous domain/matrix morphology is observed. To identify the different components in bromobutyl (BIIR)/natural rubber (NR) blends, nanoscale indentation measurements were made on the observed phase‐separated regions. Results from force mode AFM and mechanical measurements of bulk NR and BIIR are used to assist in the interpretation of the TMAFM results for the BIIR/NR blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 492–503, 2006  相似文献   

11.
There are number of important developments in the area of elastomeric polymers, including (i) network chains of controlled stiffness, (ii) model elastomers (including dangling-chain networks), (iii) fluorosiloxane elastomers, (iv) new thermoplastic elastomers, (v) other new elastomers, (v) bimodal network chain-length distributions, (vi) cross linking in solution or in a state of deformation, and (vii) gel collapse. Interesting elastomeric composites include those with (i) in-situ generated ceramic-like particles, (ii) ellipsoidal fillers, (iii) clay-like layered fillers, (iv) polyhedral oligomeric silsesquioxane (POSS) particles, (v) porous fillers, (vi) elastomeric domains modifying ceramics, and (vii) controlled interfaces. New characterization techniques are being developed for elastomers, and there have been new developments in elasticity theory and in elastomer processing. Some examples of societal aspects of relevance are (i) synthesis of elastomers in environmentally-friendly solvents, (ii) biosynthesis, (iii), recyclability, (iv) improved adhesion to tire cords, and (v) better barrier properties in anti-terrorism clothing. Educational topics include curriculum development, and mobile laboratories for elastomer experiments and demonstrations.  相似文献   

12.
This review is focused on the use of ionomers in shape memory polymers. Ionomers are polymers that contain less than ∼15% ionic groups. The incompatibility between the ion-pairs and the polymer backbone drives microphase separation producing dispersed ionic aggregates, which can physically crosslink the polymer. Shape memory polymers are responsive materials that can be deformed to program a temporary shape and then recovered on application of an external stimulus. Through the review of the main types of ionomers used in shape memory polymers, polyurethanes and polyester ionomers, polyolefin and polyaromatic ionomers, and perfluorosulfonic acid ionomers (i.e., Nafion®) it will be shown that ionomers can produce robust thermoplastic shape memory polymers and in many cases impart unique properties which allow advanced shape memory materials to be obtained including antibacterial, high temperature, and multishape memory polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1389–1396  相似文献   

13.
<正> 含10%摩尔以下的离子且主链为柔性的离聚体是一种热塑性弹性体。在动态力学性质方面呈现特殊的行为,表现在贮能模量(1gE′)与温度的关系中有橡胶态平台出现。最早Otocka等指出,(丁二烯-甲基丙烯酸)共聚物无橡胶态平台,经金属离子中和后产生橡胶态平台,且E′增加。Agarwal,Makowski等则报道磺化乙丙胶离聚体的橡胶态平台随离子含量提高而加宽,随硬脂酸锌的加入而缩短。Fitzgerald及Weisst结合X-射线小角散射研究了甘油及邻苯二甲酸二辛酯对磺化聚苯乙烯离聚体的动态力学性质的影响。  相似文献   

14.
The influence of dynamic vulcanization on the amount of the sol fraction, the crosslink density, the melt flow index, and the mechanical properties of ternary (isotactic polypropylene-rubber-crumb rubber) and binary (rubber-crumb rubber) blends was studied. Two types of ethylene-propylene-diene terpolymer (elastomer) were used as the rubber component, the oil-free elastomer and the elastomer extended with paraffin oil during its synthesis. The blends were vulcanized in the presence of a sulfur accelerating system. It was shown that blends with crumb rubber having a particle size of less than 0.1 mm exhibited the best mechanical and rheological characteristics. The introduction of crumb rubber into thermoplastic elastomers that contain the oil-free ethylene-propylene-diene terpolymer leads, at a certain ratio of the components, to a rise in the melt flow index, regardless of the crumb-rubber particle size and of whether the rubber component was vulcanized.  相似文献   

15.
A series of polyurethane organometallic complexes based on novel diols, bis[N-[[2-hydroxyphenyl]methylene]hydroxylethyleneamino]-copper(II) (DBSICu), were synthesized successfully. The products are elastomeric glassy materials or powders. Similar to other polyurethane elastomers, these coordination block copolymers exhibit 2-phase microstructure and thermoplastic properties. It is interesting to note that some of these polyurethanes show a Schlieren pattern under the polarizing optical microscope. The liquid crystalline properties of DBSICu and the coordination polymers are studied in detail in this study. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The preparation, rheology, and mechanical properties of a family of blends composed of transition-metal neutralized sulfonated ethylene-propylene-diene elastomers (S-EPDM) and styrene-4 vinylpyridine copolymers (SVP) are described. These polymeric materials contain relatively low levels of interacting groups (≤ 10 mol%), which are, however, sufficient for forming an intermolecular complex. A distinguishing characteristic of these blends is that the rheology and mechanical properties are strongly influenced by a coordination-type bonding between the transition metal and the basic nitrogen unit. As a result, markedly improved and enhanced physical properties are observed, especially when the stoichometric ratio of the interacting moieties are approached (SO/N = 1/1). This enhancement in properties is clearly exhibited in melt viscosity data, dynamic mechanical data, and thermal data. The blend morphology is also altered by complex formation, as is observed in scanning electron microscopy of the blends from which one of the ingredients was selectively extracted. At the stoichometric ratio, the blend of the olefinic elastomeric ionomer and the styrenic thermoplastic copolymer approaches a single-phase system. Such blends are otherwise completely immiscible when the coordination-type interacting groups are absent from either of the individual components. Accordingly, it was observed that nontransition-type (Na, Mg) counterions have only a marginal effect on the compatibility of these blends, as is the case in the completely unfunctionized blend components.  相似文献   

17.
The article describes the measurement results of the thermal properties of cross-linked blends of carboxylated butadiene-acrylonitrile rubber (XNBR, Krynac X.7.50) and chlorosulfonated polyethylene (CSM, Hypalon 48) under inert gas (DSC, TG) and in air (derivatography). The blends were cross linked at a temperature of 150 °C by means of MgO in the presence of stearic acid. The thermal curves were interpreted from the point of view of phase transitions and chemical reactions of high-molecular components. It has been found that the polymers under investigation show a good compatibility resulting from the presence of both inter-polymeric covalent bonds and inter-polymeric ionic bridges containing magnesium ions that fulfill the role of chemical compatibilizer. The study has shown that XNBR/CSM blends belong to a group of polymeric materials that are self-extinguished in air. Their flammability, determined by OI and the combustion time in air, clearly depends on the cross-linking degree associated with the quantity of MgO incorporated into the blend of elastomers.  相似文献   

18.
采用DSR-200动态应力流变仪研究了磺化度为0.98%(摩尔分数)的轻度磺化聚苯乙烯(SPS)离聚物及其锌盐(ZnSPS)与聚苯乙烯(PS)的共混物(PS/SPS,PS/ZnSPS)的流变性能.由于离聚物中离子聚集的物理交联作用,使其流变性能与PS相比有明显差别.动态频率实验结果表明,所有样品均可采用时温等效处理.另外,在与分子链运动相关的低频区,由于离子聚集的作用使得离聚物的模量远大于PS的模量.离聚物在稳态剪切作用下,由于离子聚集的破坏而表现出明显的屈服现象,并能用Utracki的屈服应力公式表征其屈服应力和零切粘度.此外,离聚物的屈服现象还与温度相关.由于动态和稳态实验分别测试离子聚集存在和破坏的不同材料状态,因此对离聚物无法应用Cox-Merz规则.动态和稳态实验结果均表明,PS/SPS和PS/ZnSPS的性能与组成的变化规律不同,意味着二者之间存在不同的离子聚集结构或相互作用.  相似文献   

19.
Polyurethanes based on methylene bis(p-phenyl isocyanate), bis(hydroxymethyl) propanoic acid, and poly (tetramethylene oxide) were synthesized, and their morphology and physical properties investigated. The acid polyurethanes exhibited very poor phase separation and mechanical properties, but upon neutralization with alkali metals phase separation improved dramatically and the materials resembled tough elastomers. The choice of cation played a much less important role than hard segment content in determining morphology and properties. Small-angle x-ray scattering patterns of these ionic polyrethanes exhibit two peaks, one characteristic of scattering between the hard and soft domains and the other reflecting scattering from aggregates of ionic groups residing within the hard domains. While ionic aggregation is the primary driving force for phase separation in these materials, their morphology more closely resembles that for nonionic polyurethanes than that for conventional ionomers, because the ionic groups exist in blocks composed primarily of rigid diisocyanate residues.  相似文献   

20.
Multicomponent polymer blends afford polymeric materials with specific properties for many applications. The effect of different chemical structures on the miscibility and compatibility of polymer blends composed of multicomponent acrylic and styrenic polymers was studied in this research. The influence of each component on the thermal, mechanical, and morphological properties, as well as optical transparency, was analyzed in poly (methyl methacrylate), homopolymer (PMMAh), or copolymer (PMMAe) blends where the minority constituents formed by polystyrene (PS), styrene-acrylonitrile copolymer (SAN) or acrylonitrile-butadiene-styrene terpolymer (ABS). The results showed significant changes in the properties of these mixtures due to the effect of the type of chemical structure and different elastomeric domains of the majority and minority components of polymer blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号