首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.  相似文献   

2.
The precise assignments of cross polarization/magic angle spinning (CP/MAS) (13)C NMR spectra of cellulose I(alpha) and I(beta) were performed by using (13)C labeled cellulose biosynthesized by Acetobacter xylinum (A. xylinum) ATCC10245 strain from culture medium containing D-[1,3-(13)C]glycerol or D-[2-(13)C]glucose as a carbon source. On the CP/MAS (13)C NMR spectrum of cellulose from D-[1,3-(13)C]glycerol, the introduced (13)C labeling were observed at C1, C3, C4, and C6 of the biosynthesized cellulose. In the case of cellulose biosynthesized from D-[2-(13)C]glucose, the transitions of (13)C labeling to C1, C3, and C5 from C2 were observed. With the quantitative analysis of the (13)C transition ratio and comparing the CP/MAS (13)C NMR spectrum of the Cladophora cellulose with those of the (13)C labeled celluloses, the assignments of the cluster of resonances which belong to C2, C3, and C5 of cellulose, which have not been assigned before, were performed. As a result, all carbons of cellulose I(alpha) and I(beta) except for C1 and C6 of cellulose I(alpha) and C2 of cellulose I(beta) were shown in equal intensity of doublet in the CP/MAS spectrum of the native cellulose, which suggests that two inequivalent glucopyranose residues were contained in the unit cells of both cellulose I(alpha) and I(beta) allomorphs.  相似文献   

3.
The 3D structure of bacteriorhodopsin (bR) obtained by X-ray diffraction or cryo-electron microscope studies is not always sufficient for a picture at ambient temperature where dynamic behavior is exhibited. For this reason, a site-directed solid-state 13C NMR study of fully hydrated bR from purple membrane (PM), or a distorted or disrupted lattice, is very valuable in order to gain insight into the dynamic picture. This includes the surface structure, at the physiologically important ambient temperature. Almost all of the 13C NMR signals are available from [3-13C]Ala or [1-13C]Val-labeled bR from PM, although the 13C NMR signals from the surface areas, including loops and transmembrane alpha-helices near the surface (8.7 angstroms depth), are suppressed for preparations labeled with [1-13C]Gly, Ala, Leu, Phe, Tyr, etc. due to a failure of the attempted peak-narrowing by making use of the interfered frequency of the frequency of fluctuation motions with the frequency of magic angle spinning. In particular, the C-terminal residues, 226-235, are present as the C-terminal alpha-helix which is held together with the nearby loops to form a surface complex, although the remaining C-terminal residues undergo isotropic motion even in a 2D crystalline lattice (PM) under physiological conditions. Surprisingly, the 13C NMR signals could be further suppressed even from [3-13C]Ala- or [1-13C]Val-bR, due to the acquired fluctuation motions with correlation times in the order of 10(-4) to 10(-5) s, when the 2D lattice structure is instantaneously distorted or completely disrupted, either in photo-intermediate, removed retinal or when embedded in the lipid bilayers.  相似文献   

4.
We present a new method that integrates selective biosynthetic labeling and solid-state NMR detection to identify in situ important protein cross-links in plant cell walls. We have labeled soybean cells by growth in media containing l-[ring-d(4)]tyrosine and l-[ring-4-(13)C]tyrosine, compared whole-cell and cell-wall (13)C CPMAS spectra, and examined intact cell walls using (13)C{(2)H} rotational echo double-resonance (REDOR) solid-state NMR. The proximity of (13)C and (2)H labels shows that 25% of the tyrosines in soybean cell walls are part of isodityrosine cross-links between protein chains. We also used (15)N{(13)C} REDOR of intact cell walls labeled by l-[ε-(15)N,6-(13)C]lysine and depleted in natural-abundance (15)N to establish that the side chains of lysine are not significantly involved in covalent cross-links to proteins or sugars.  相似文献   

5.
[1-13C]Gly, L-[1-13C]Ala, [15N]Gly, L-[15N]Ala, [2,2-2H2]Gly, L-[3,3-2H2]Ser and [3,3,3-2H3]Ala labeled silk fibroin fibers from Bombyx mori and Samia cynthia ricini silkworms were prepared in order to analyze structure of backbone and dynamics of side chain. The torsion angles ϕ and Ψ were determined from the angular dependent 13C and 15N solid state NMR spectra for uniaxially oriented fiber samples. In addition, the characteristic side chain dynamics of Ser residue determined from solid state 2H NMR measurements was compared with those of Ala and Gly residues.  相似文献   

6.
We describe a magic-angle spinning NMR experiment for selective (13)C-(15)N distance measurements in uniformly (13)C,(15)N-labeled solids, where multiple (13)C-(15)N and (13)C-(13)C interactions complicate the accurate measurement of structurally interesting, weak (13)C-(15)N dipolar couplings. The new experiment, termed FSR (frequency selective REDOR), combines the REDOR pulse sequence with a frequency selective spin-echo to recouple a single (13)C-(15)N dipolar interaction in a multiple spin system. Concurrently the remaining (13)C-(15)N dipolar couplings and all (13)C-(13)C scalar couplings to the selected (13)C are suppressed. The (13)C-(15)N coupling of interest is extracted by a least-squares fit of the experimentally observed modulation of the (13)C spin-echo intensity to the analytical expression describing the dipolar dephasing in an isolated heteronuclear spin pair under conventional REDOR. The experiment is demonstrated in three uniformly (13)C,(15)N-labeled model systems: asparagine, N-acetyl-L-Val-L-Leu and N-formyl-L-Met-L-Leu-L-Phe; in N-formyl-[U-(13)C,(15)N]L-Met-L-Leu-L-Phe we have determined a total of 16 internuclear distances in the 2.5-6 A range.  相似文献   

7.
The molecular conformation of silk fibrion is characterized by solid-state 13C NMR before spinning (silk I structure) and after spinning (silk II structure). We compare native silk fibers with the quasi-crystalline Cp-fraction and a synthetic model peptide (Ala-Gly)15, both of which can be converted either into silk I by dialysis from 9 M LiBr or into silk II by treatment with formic acid. Our results demonstrate that silk II fibers are intrinsically heterogeneous, consisting of beta-sheets, distorted beta-turns, and distorted beta-sheets. This higher-order heterogeneity is revealed by the 13C-NMR Cbeta-peak of Ala, indicating that the Ala side chains are stacked partially in parallel and partially face-to-face, at a ratio of 1:2.  相似文献   

8.
Fibril formation in human calcitonin (hCT) from aqueous solution at pH 4.1 was examined and compared with those at pH 3.3 and 7.5 corresponding to three different net charges by means of site-directed (13)C solid-state NMR spectroscopy. Notably, the observed (13)C chemical shifts and lineshapes of the (13)C CP/MAS spectra differed substantially among fibrils prepared at different pHs. It was found that antiparallel beta-sheet structures were formed at pH 7.5 and 4.1 in the central core regions. In the C-terminal region, random coils were formed at both pH 7.5 and 4.1, although the random coil region at pH 4.1 was larger than that at pH 7.5. Fibrillation kinetics analyzed by a two-step autocatalytic reaction mechanism showed that the rate constants k(1) and k(2) for nucleation and maturation reactions of the fibril formation, respectively, were separately determined and the values correlated well with the net positive charges of Lys(18) and His(20) rather than the existence of a negative charge of Asp(15). Further, an attempt was made to assess interatomic distances between amide nitrogen and carbonyl carbon of neighboring chains of (13)C, (15)N-labeled hCT and a model pentapeptide by (13)C REDOR measurements by taking into account its dipolar interaction analyzed by the 3 spin system proposed previously. A unique chain packing of the antiparallel beta-sheets was proposed as a dominant fibril structure, although the possibility of a contribution of chain packing consisting of sliding one or two residues perpendicular to the fibril direction cannot be ruled out. In addition, it appears that the phenyl rings of Phe(16) are aligned on the same side of the beta-sheet and make the beta-sheet stable by forming pi-pi interactions between the beta-strands.  相似文献   

9.
The synthesis of [2'-(13)C, 1,3-(15)N2]uridine 11 was achieved as follows. An epimeric mixture of D-[1-(13)C]ribose 3 and D-[1-(13)C]arabinose 4 was obtained in excellent yield by condensation of K13CN with D-erythrose 2 using a modification of the Kiliani-Fischer synthesis. Efficient separation of the two aldose epimers was pivotally achieved by a novel ion-exchange (Sm3+) chromatography method. D-[2-(13)C]Ribose 5 was obtained from D-[1-(13)C]arabinose 4 using a Ni(II) diamine complex (nickel chloride plus TEMED). Combination of these procedures in a general cycling manner can lead to the very efficient preparation of specifically labelled 13C-monosaccharides of particular chirality. 15N-labelling was introduced in the preparation of [2'-(13)C, 1,3-(15)N2]uridine 11 via [15N2]urea. Cross polarisation magic angle spinning (CP-MAS) solid-state NMR experiments using rotational echo double resonance (REDOR) were carried out on crystals of the labelled uridine to show that the inter-atomic distance between C-2' and N-1 is closely similar to that calculated from X-ray crystallographic data. The REDOR method will be used now to determine the conformation of bound substrates in the bacterial nucleoside transporters NupC and NupG.  相似文献   

10.
Boltzmann statistics rotational-echo double-resonance analysis   总被引:1,自引:0,他引:1  
A new approach to rotational-echo double-resonance (REDOR) data analysis, analogous to Boltzmann maximum entropy statistics, is reported. This Boltzmann statistics REDOR (BS-REDOR) approach is useful for reconstructing an unbiased internuclear distance distribution for multiple internuclear distances from experimentally limited REDOR data sets on isolated spin pairs. The analysis is characterized by exploring reconstructions on model data and applied to both [1-(13)C,15N]-glycine and a long intramolecular distance in Abeta (16-22) peptide nanotubes. The approach also provides insight into the minimal number of REDOR data points required to allow faithful determination of dipolar couplings in systems with multiple internuclear distances.  相似文献   

11.
The nuclear poly(A) binding protein PABPN1 possesses a natural 10 alanine stretch that can be extended to 17 Ala by codon expansion. The expansions are associated with the disease oculopharyngeal muscular dystrophy (OPMD), which is characterized histopathologically by intranuclear fibrillar deposits. Here, we have studied the Ala extended fibrillar N-terminal fragment of PABPN1, (N-(+7)Ala), comprising 152 amino acids. At natural abundance, cross-polarized 13C MAS NMR spectra are dominated by the three Ala signals with characteristic beta-sheet chemical shifts. In contrast, directly polarized 13C MAS spectra show a multitude of narrow lines, suggesting a large portion of highly mobile sites. Proteolytic cleavage of the protein combined with MALDI-TOF mass spectrometry revealed a protease-resistant peptide encompassing residues 13/14 to 50-52 with the poly-Ala stretch in the center. Measurements of the 1H-13Calpha dipolar couplings of 13C/15N-labeled N-(+7)Ala revealed high order parameters of 0.77 for the poly-Ala stretch of the fibril, while the majority of the residues of N-(+7)Ala exhibited very low order parameters between 0.06 and 0.15. Only some Gly residues that are flanking the Ala-rich region had significant order parameters of 0.47. Thus, site-specific dynamic mapping represents a useful tool to identify the topology of fibrillar proteins.  相似文献   

12.
Low-temperature 15N and 13C CP/MAS (cross-polarization/magic angle spinning) NMR has been used to analyze BChl-histidine interactions and the electronic structure of histidine residues in the light-harvesting complex II (LH2) of Rhodopseudomonas acidophila. The histidines were selectively labeled at both or one of the two nitrogen sites of the imidazole ring. The resonances of histidine nitrogens that are interacting with B850 BChl a have been assigned. Specific 15N labeling confirmed that it is the tau-nitrogen of histidines which is ligated to Mg2+ of B850 BChl molecules (beta-His30, alpha-His31). The pi-nitrogens of these Mg2+-bound histidines were found to be protonated and may be involved in hydrogen bond interactions. Comparison of the 2-D MAS NMR homonuclear (13C-13C) dipolar correlation spectrum of [13C6,15N3]-histidines in the LH2 complex with model systems in the solid state reveals two different classes of electronic structures from the histidines in the LH2. In terms of the 13C isotropic shifts, one corresponds to the neutral form of histidine and the other resembles a positively charged histidine species. 15N-13C double-CP/MAS NMR data provide evidence that the electronic structure of the histidines in the neutral BChl a/His complexes resembles the positive charge character form. While the Mg...15N isotropic shift confirms a partial positive charge transfer, its anisotropy is essentially of the lone pair type. This provides evidence that the hybridization structure corresponding to the neutral form of the imidazole is capable of "buffering" a significant amount of positive charge.  相似文献   

13.
13C-2H REDOR NMR experiments were performed on 30-residue (AlaGly)15 silk I mimics of Bombyx mori silk fibroin to gain structural details about the elusive structure of the silk I conformation. 13C,2H-labeling strategies are illustrated for measuring individual dihedral angles in peptides and for determining local structure by REDOR. A major turn of type II character is found in the region Gly(14)-Ala(17).  相似文献   

14.
杯芳烃(Calixarenes)[1]是由苯酚单体通过亚甲基单元连接起来的一类性质稳定的环状低聚物.由于它的独特结构特点以及由此表现出来的特有性能,使之已成为继冠醚和环糊精之后的第三代超分子[2].近年来,杯芳烃在色谱中的应用已经引起人们的关注,有关...  相似文献   

15.
In order to develop triple-resonance solid-state NMR spectroscopy of membrane proteins, we have implemented several different (13)C labeling schemes with the purpose of overcoming the interfering effects of (13)C-(13)C dipole-dipole couplings in stationary samples. The membrane-bound form of the major coat protein of the filamentous bacteriophage Pf1 was used as an example of a well-characterized helical membrane protein. Aligned protein samples randomly enriched to 35% (13)C in all sites and metabolically labeled from bacterial growth on media containing [2-(13)C]-glycerol or [1,3-(13)C]-glycerol enables direct (13)C detection in solid-state NMR experiments without the need for homonuclear (13)C-(13)C dipole-dipole decoupling. The (13)C-detected NMR spectra of Pf1 coat protein show a substantial increase in sensitivity compared to the equivalent (15)N-detected spectra. The isotopic labeling pattern was analyzed for [2-(13)C]-glycerol and [1,3-(13)C]-glycerol as metabolic precursors by solution-state NMR of micelle samples. Polarization inversion spin exchange at the magic angle (PISEMA) and other solid-state NMR experiments work well on 35% random fractionally and metabolically tailored (13)C-labeled samples, in contrast to their failure with conventional 100% uniformly (13)C-labeled samples.  相似文献   

16.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

17.
Biological magic angle spinning (MAS) solid-state nuclear magnetic resonance spectroscopy has developed rapidly over the past two decades. For the structure determination of a protein by solid-state NMR, routinely (13)C,(13)C distance restraints as well as dihedral restraints are employed. In protonated samples, this is achieved by growing the bacterium on a medium which contains [1,3]-(13)C glycerol or [2]-(13)C glycerol to dilute the (13)C spin system. Labeling schemes, which rely on heteronuclei, are insensitive both for detection and in terms of quantification of distances, since they are relying on low-γ nuclei. Proton detection can in principle provide a gain in sensitivity by a factor of 8 and 31, compared to the (13)C or (15)N detected version of the experiment. We report here a new labeling scheme, which enables (1)H-detection of aliphatic resonances with high resolution in MAS solid-state NMR spectroscopy. We prepared microcrystals of the SH3 domain of chicken α-spectrin with 5% protonation at nonexchangeable sites and obtained line widths on the order of 25 Hz for aliphatic (1)H resonances. We show further that (13)C resolved 3D-(1)H,(1)H correlation experiments yield access to long-range proton-proton distances in the protein.  相似文献   

18.
Although 7-deazapurines are well known and feature in the hypermodified RNA base queuosine, and in a range of nucleoside antibiotics such as toyocamycin, a mechanistic understanding of their biosynthesis is a longstanding problem. In particular, the obligatory loss of the N-7 nitrogen atom is puzzling, and in order to address this mechanistic conundrum a novel doubly labeled purine, [2-(13)C, 7-(15)N]-adenine, has been prepared and used as a biosynthetic precursor to toyocamycin in Streptomyces rimosus. NMR spectroscopy and mass spectrometry clearly showed incorporation of (13)C but loss of (15)N in the toyocamycin produced.  相似文献   

19.
The structure of silk fibroin from a wild silkworm, S. c. ricini, the amino acid sequence of which consists of repeated poly-Ala and Gly-rich regions, was examined by using solution and solid-state NMR methods. The structural transition of the silk fibroin in aqueous solution was monitored by using 13C solution NMR spectroscopy as a function of temperature. The fast exchange with respect to the chemical shift between the helix and coil conformations was observed in the poly-Ala region and the slow conformational change from alpha-helix to random coil was observed for the Gly residue adjacent to the N-terminal Ala residue of the poly-Ala region. The torsion angles of several Ala and Gly residues in the model peptide, GGAGGGYGGDGG(A)12GGA-GDGYGAG, were determined by the conformation-dependent 13C chemical shifts, rotational echo double resonance (REDOR) and 2D spin-diffusion NMR methods. The solid-state NMR analysis leads to the precise silk structure before spinning, where the poly-Ala sequence takes a typical alpha-helix pattern with a tightly winded helical structure at both terminal regions of the poly-Ala sequence. This is expected to stabilize the alpha-helical structure of the poly-Ala region in S. c. ricini silk fibroin from the silkworm.  相似文献   

20.
The complex of the HIV TAR RNA with the viral regulatory protein Tat is of considerable interest, but the plasticity of this interaction has made it impossible so far to establish the structure of that complex. In order to explore a new approach to obtain structural information on protein-RNA complexes, we performed (13)C/(15)N-(19)F REDOR NMR experiments in the solid state on TAR bound to a peptide comprising the RNA-binding section of Tat. A critical arginine in the peptide was uniformly (13)C and (15)N labeled, and 5-fluorouridine was incorporated at the U23 position of TAR. REDOR irradiation resulted in dephasing of the (13)C and (15)N resonances, indicating the proximity of the U23(5F)-C and U23(5F)-N spin pairs. Best fits to the REDOR data show the U23(5F)-C distances and the U23(5F)-N distances are in good agreement with the distances obtained from solution NMR structures of partial complexes of Tat with TAR. These results demonstrate that it is possible to study protein-RNA complexes using solid-state REDOR NMR measurements, adding to a growing list of solid state techniques for studying protein-nucleic acid complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号