首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The extraction of gallium(III) with newly prepared 5-alkyloxymethyl-8-quinolinol derivatives with alkyl substituent at the 2-position in 8-quinolinol moiety has been studied. The Ga(III)-5-octyloxymethyl-8-quinolinol (HO(8)Q), Ga(III)-2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q), Ga(III)-2-methyl-5-hexyloxymethyl-8-quinolinol (HM-O(6)Q), and Ga(HI)-2-n-butyl-5-hexyloxymethyl-8-quinolinol (HNBO(6)Q) complexes extracted in heptane from a perchloric acid medium were Ga(O(8)Q)(3), Ga(OH)(H(2)O)(MO(8)Q)(2), Ga(OH)(H(2)O)(MO(6)Q)(2) and Ga(OH)H(2)O)(NBO(6)Q)(2), respectively. The 2-tert-butyl-5-hexyloxymethyl-8-quinolinol did not exhibit any reactivity toward gallium(III). The extraction constants for Ga(O(8)Q)(3) (K(ex) = [Ga(O(8)Q)(3)](org) [H(+)](3)/[Ga(3+)][HO(8)Q](org)(3)), Ga(OH)(H(2)O)(MO(8)Q)(2) (K(ex) = [Ga(OH) (H(2)O)(MO(8)Q)(2)](org) [H(+)](3)/[Ga(3+)][HMO(8)Q](org)(2)), Ga(OH)(H(2)O)(2)(MO(6)Q)(2) and Ga(OH)(H(2)O)(NBO(6)Q)(2), which were extracted in heptane from an acidic solution, are 10(3.21 +/- 0.12), 10(-4.24 +/- 0.16), 10(-3.84 +/- 0.16) and 10(-4.07 +/- 0.07), respectively at I = 0.1 M and 25 degrees C. HNBO(6)Q exhibited very high selectivity toward gallium(III) in the presence of aluminum(III). Even in the presence of a 100 fold excess of aluminum(III) to gallium(III) (1.43 x 10(-5) M), gallium(III) was completely extracted and the distribution ratio of aluminum(III) was found to be less than 2.0 x 10(-3).  相似文献   

2.
Xu  Fan  Luo  Xue-Jing  Wu  Cui-E  Liao  Bei-Yi  Wang  Kai  Liang  Fu-Pei 《Journal of Cluster Science》2021,32(5):1411-1418
Journal of Cluster Science - Employing tripodal Schiff base ligand of tris[4-(2-hydroxy-3-methoxyphenyl)-3-aza-3-butenyl]amine (H3L1) and auxiliary ligand of 2-hydroxy-5-chlorobenzaldehyde, a...  相似文献   

3.
Four mixed O,S binding ligand precursors derived from maltol (3-hydroxy-2-methyl-4-pyrone) have been chelated to gallium(III), indium(III), and lanthanide(III) ions to yield a series of metal complexes. The four ligand precursors include two pyranthiones, 3-hydroxy-2-methyl-4-pyranthione, commonly known as thiomaltol (Htma), and 2-ethyl-3-hydroxy-4-pyranthione, commonly known as ethylthiomaltol (Hetma), and two pyridinethiones, 3-hydroxy-2-methyl-4(H)-pyridinethione (Hmppt) and 3-hydroxy-1,2-dimethyl-4-pyridinethione (Hdppt). Dimeric forms of the pyridinethiones, Hmppt dimer and Hdppt dimer, were also isolated and characterized. Complete characterization of the monomeric organic compounds is reported including acidity constants and crystal structures of Htma, Hetma, and Hdppt dimer. Reacting the four monomeric ligand precursors with Ga(3+) and In(3+) ions yielded new tris(bidentate ligand) complexes. X-ray-quality crystals of the fac isomer of Ga(tma)(3) were also obtained. New complexes with a range of lanthanides (Ln(3+)) were also synthesized with the two pyranthiones, Htma and Hetma. The synthesis reactions yielded complexes of the type LnL(3).xH(2)O and LnL(2)(OH).xH(2)O, as indicated by elemental analysis and spectroscopic evidence such as mass spectral data and IR and NMR spectra.  相似文献   

4.
Saito K  Taninaka I  Murakami S  Muromatsu A 《Talanta》1998,46(5):1187-1194
The extraction behaviour of copper(II) and silver(I) with 2-(3,6,10,13-tetrathiacyclotetradec-1-oxy)hexanoic acid (TTCTOHA) was investigated at 25+/-0.1 degrees C and ionic strength of 0.1. The value of the logarithmic distribution coefficient, logK(DR) of TTCTOHA between octan-1-ol and aqueous phases was determined to be 4.13. Copper(II) was extracted with TTCTOHA into octan-1-ol as CuL(2), where L represents the anionic species of TTCTOHA. The logarithmic extraction constant, logK(ex(10)), was determined at -7.42. Silver(I) was extracted with TTCTOHA into octan-1-ol as AgL and Ag(2)L(2). The logarithmic distribution constant, logK(DC), of AgL was estimated to be 0.49. On the other hand, silver(I) was extracted into 1,2-dichloroethane as AgL and the logarithmic extraction constant, logK(ex(10)), was determined to be -2.24.  相似文献   

5.
The synthesis and characterization of two new macrocyclic ligands, the bis-macrocyclic compound 2,6-bis(1,4,13-triaza-7,10-dioxacyclopentadec-1-ylmethyl)phenol (L) and 38-methoxy-1,4,13,16,19,28-hexaaza-7,10,22,25-tetraoxatricyclo[14.14.7.1(32,36)]octatriconta-32,34,Delta(36,38)-triene (L1) are reported. Equilibrium studies of basicity and coordination properties toward metal ions such as Cu(II), Zn(II), Cd(II) and Pb(II) were performed for ligand by potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I= 0.15 mol dm(-3)). L behaves as a hexaprotic base (logK(1)= 10.93, logK(2)= 9.70, logK(3)= 8.79, logK(4)= 8.05, logK(5)= 6.83, logK(6)= 2.55). All metal ions form stable mono- and dinuclear complexes: logK(MLH(-1))= 25.61 for Cu(II), 15.37 for Zn(II), 12.58 for Cd(II) and 13.79 for Pb(II); logK(M(2)LH(-1))= 31.61 for Cu(II), 23.38 for Zn(II), 24.49 for Cd(II) and 23.68 for Pb(II). All these dinuclear species show a great tendency to add the OH(-) group: the equilibrium constant for the addition reaction was found to be logK(M(2)LH(-1)OH)= 4.77 for Cu(II), 5.66 for Zn(II), 2.8 for Cd(II) and 3.18 for Pb(II). In the case of Ni(II), kinetic inertness prevents the possibility of solution studies. The dinuclear solid adducts [Ni(2)H(-1)L(N(3))(3)].EtOH and [Cu(2)H(-1)L(N(3))](ClO(4))(2) were characterized by X-ray analysis.  相似文献   

6.
The hydrolysis of praseodymium III in 2 M sodium chloride at 303 K was studied. Two methods were used: pH titration followed by a computational refinement and solvent extraction in the presence of a competitive ligand. The hydrolysis constants obtained by pH titration were: logbeta(1,H)=-7.68+/-0.07, logbeta(1,2H)=-15.10+/-0.03, and beta(1,3H)=-23.80+/-0.04. The stability constants of praseodymium carbonate complexes were determined by pH titration as well and were: logbeta(1,CO(2-)(3))=5.94+/-0.08 and logbeta(1,2CO(2-)(3))=11.15+/-0.15. Praseodymium carbonate species were taken into consideration for calculating the first hydrolysis constants by the solvent extraction method and the value obtained was: logbeta(1,H)=-7.69+/-0.27. The values for logbeta(1,H) attained by both methods are the same. The species-distribution diagram was obtained from the stability constants of praseodymium carbonate complexes and hydrolysis products in the conditions of the present work.  相似文献   

7.
Treatment of tripodal tris(3-tert-butyl-2-hydroxy-5-methylbenzyl)amine (L) with 1 equiv of trimethylaluminum in toluene gave the stable proalumatrane (AlL) (1) [wherein L = tris(3-tert-butyl-5-methyl-2-oxidobenzyl)amine] featuring a distorted trigonal monopyramidal four-coordinate aluminum geometry. An analogous reaction uses the less sterically congested isomer of L, namely, tris(5-tert-butyl-2-hydroxy-3-methylbenzyl)amine provided dimeric (AlL')2 (2) [wherein L' = tris(5-tert-butyl-3-methyl-2-oxidobenzyl)amine], which contains two bridging alumatrane moieties possessing five-coordinate TBP aluminum geometries. Reaction of AlL with water provided the adduct H2O.AlL (3), a species that is representative of a coordinatively stabilized intermediate in the hydrolysis of an aluminum alkoxide. Theoretical calculations revealed that considerable stabilization energy is obtained by the coordination of a water molecule to the tetracoordinate aluminum in AlL and that this result is consistent with the postulate that the Lewis acidity of AlL exceeds that of boron trifluoride, despite the presence of the transannular N-->Al bond in AlL.  相似文献   

8.
Ovotransferrin is a main member of transferrin family and has a dual role in both the transport of iron and antibacterial function. Gallium-67 is widely used as an imaging agent for tumors. It has been reported that Ga(3+) can bind to apoovotransferrin at two sites, one in the N-terminal lobe and another in the C-terminal lobe. However, several details of the interaction between Ga(3+) and apoOTf remain unclear. Here, we report detailed investigations into the interactions of Ga(3+) with apoovotransferrin at the molecular level. First, the characteristics of Ga(3+) binding to apoovotransferrin were analyzed using UV difference spectra. The results show that Ga(3+) prefers to bind to the N-terminal site rather than the C-terminal site under the experimental conditions. Effective stability constants of logK(N)=18.88+/-0.24 and logK(C)=17.65+/-0.12 were determined. Second, conformational changes in apoovotransferrin during Ga(3+) binding were studied using 2-p-toluidinylnaphthalene-6-sulfonate (TNS) as a fluorescence probe. Apoovotransferrin undergoes a large conformational change when Ga(3+) binds to the N-terminal site, and a smaller conformational change when the ion binds to the C-terminal site. UV difference spectra were also used to measure the rate at which EDTA removes Ga(3+) from ovotransferrin carrying one Ga(3+) at the N-terminal site. Ga(3+) removal from the N-terminal binding site follows simple saturation kinetics.  相似文献   

9.
The formation and stability of protonated spermidine and spermine-carboxylic ligand complexes (seven systems) were studied potentiometrically (H(+)-glass electrode). ALH(r) species are formed (A=spermidine, spermine, L(z-)=acetate, malonate, 1,2,3-propanetricarboxylate, 1,2,3,4-butanetetracarboxylate; r=1...m+n-1, where m and n are the maximum degree of protonation of the amine and of the carboxylic ligand, respectively), and their stability is a function of charges involved in the formation reaction. For the equilibrium H(i)A(i+)+H(j)L((j-z))=ALH(i+j)((i+j-z)) the linear relationship logK(ij)=0.46 zeta (zeta=mid R:i(z-j)mid R:) was found. By means of this simple equation a mean free energy value can be obtained per salt bridge (n), namely -DeltaG degrees =5.25+/-0.15 kJ mol(-1)n(-1). Species formed by the highest charged ligands are quite stable (K>10(3) mol(-1) dm(3)) and potentially play an important role in the speciation of biofluids, as shown by speciation diagrams and simulated experiments.  相似文献   

10.
The reaction of [Cu(L)(H(2)O)](2+) with an excess of thiosulfate in aqueous solution produces a blue to green color change indicative of thiosulfate coordination to Cu(II) [L = tren, Bz(3)tren, Me(6)tren, and Me(3)tren; tren = tris(2-aminoethyl)amine, Bz(3)tren = tris(2-benzylaminoethyl)amine, Me(6)tren = tris(2,2-dimethylaminoethyl)amine, and Me(3)tren = tris(2-methylaminoethyl)amine]. In excess thiosulfate, only [Cu(Me(6)tren)(H(2)O)](2+) promotes the oxidation of thiosulfate to polythionates. Products suitable for single-crystal X-ray diffraction analyses were obtained for three thiosulfate complexes, namely, [Cu(tren)(S(2)O(3))].H(2)O, [Cu(Bz(3)tren)(S(2)O(3))].MeOH, and (H(3)Me(3)tren)[Cu(Me(3)tren)(S(2)O(3))](2)(ClO(4))(3). Isolation of [Cu(Me(6)tren)(S(2)O(3))] was prevented by its reactivity. In each complex, the copper(II) center is found in a trigonal bipyramidal (TBP) geometry consisting of four amine nitrogen atoms, with the bridgehead nitrogen in an axial position and an S-bound thiosulfate in the other axial site. Each structure exhibits H bonding (involving the amine ligand, thiosulfate, and solvent molecule, if present), forming either 2D sheets or 1D chains. The structure of [Cu(Me(3)tren)(MeCN)](ClO(4))(2) was also determined for comparison since no structures of mononuclear Cu(II)-Me(3)tren complexes have been reported. The thiosulfate binding constant was determined spectrophotometrically for each Cu(II)-amine complex. Three complexes yielded the highest values reported to date [K(f) = (1.82 +/- 0.09) x 10(3) M(-1) for tren, (4.30 +/- 0.21) x 10(4) M(-1) for Bz(3)tren, and (2.13 +/- 0.05) x 10(3) M(-1) for Me(3)tren], while for Me(6)tren, the binding constant was much smaller (40 +/- 10 M(-1)).  相似文献   

11.
The formation and stability of protonated diamines-carboxylic ligand complexes was studied potentiometrically (H(+)-glass electrode). Species formed are ALH(r) (A=cadaverine, putrescine, L=acetate, malate, tartrate, malonate, citrate, 1,2,3-propanetricarboxylate, 1,2,3,4-butanetetracarboxylate and glutamate; r=1...m+1, where m is the maximum degree of protonation of the carboxylic ligand), and their stability is a function of charges involved in the formation reaction. For the equilibrium H(i)A(i+)+H(j)L((j-z))=ALH((i+j-z))(i+j) the following linear relationships can be written: logK(1j)=-0.25+0.75 |j-z|, logK(2j)=0.50+0.90 |j-z| (by also considering some ethylenediamine and 1,2-diaminopropane complexes). Medium effects were considered. Comparison was made with analogous inorganic polyanion complexes. The simplest relationships -DeltaG(0)=6.5+/-0.3 and -DeltaG(0)=7.9+/-0.6 kJ mol(-1)n(-1) (n=number of possible salt bridges) were found for carboxylic and inorganic anions, respectively.  相似文献   

12.
The benzene-based tripodal tris(oxazolines) have been developed as the most selective and strong receptors toward linear alkylammonium ions reported to date. Among six tris(oxazolines) based on 2,4,6-trimethylbenzene framework, the phenylglycinol-derived receptor 4 exhibits the largest association constant toward nBuNH3+ (logK(ass) = 6.65 +/- 0.02), while a similar value toward tBuNH3+, (logK(ass) = 3.80 +/- 0.01) compared with others, which corresponds to the selectivity ratio of nBuNH3+/tBuNH3+ as high as approximately equals 700. The tris(oxazoline) 6 that has bare oxazoline ring exhibits still a large association constant toward sterically hindered tBuNH3+ (logK(ass) = 5.26 +/- 0.02). Both receptors 4 and 6 extract beta-phenethylammonium ion from water into chloroform almost completely. When the benzene frame is changed from 2,4,6-trimethylbenzene to 2,4,6-triethylbenzene, dramatic changes in the affinity as well as in the selectivity are observed. The association constant observed by tris(oxazoline) 8 toward nBuNH3+ approaches 10(8)M(-1) and the selectivity ratio of nBuNH3+/tBuNH3+ is increased to 2,700. This selectivity is even more enhanced to 4,000 with tris(oxazoline) 9. The enhanced binding affinity and high selectivity observed with receptors 4 and related derivatives 7-9 compared with others can be explained by an optimized steric and electronic environment provided by the phenyl substituents, which has been unambiguously demonstrated by X-ray crystallographic and 1H NMR spectroscopic studies on the host-guest complexes. The new receptor system has several unique features such as ready availability, structural simplicity, and in particular, versatility in derivatization. By virtue of these advantages, it can be readily tailored as selective receptors toward biologically important amines.  相似文献   

13.
Functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the extraction of 14 emerging contaminants from water samples. The extraction efficiencies and selectivities were compared to those of an in situ IL DLLME method which uses an in situ metathesis reaction to exchange 1-butyl-3-methylimidazolium chloride (BMIM-Cl) to 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf(2)). Compounds containing tertiary amine functionality were extracted with high selectivity and sensitivity by the 1-(6-amino-hexyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (HNH(2)MPL-FAP) IL compared to other FAP-based ILs and the BMIM-NTf(2) IL. On the other hand, polar or acidic compounds without amine groups exhibited higher enrichment factors using the BMIM-NTf(2) IL. The detection limits for the studied analytes varied from 0.1 to 55.1 μg/L using the traditional IL DLLME method with the HNH(2)MPL-FAP IL as extraction solvent, and from 0.1 to 55.8 μg/L using in situ IL DLLME method with BMIM-Cl+LiNTf(2) as extraction solvent. A 93-fold decrease in the detection limit of caffeine was observed when using the HNH(2)MPL-FAP IL compared to that obtained using in situ IL DLLME method. Real water samples including tap water and creek water were analyzed with both IL DLLME methods and yielded recoveries ranging from 91% to 110%.  相似文献   

14.
The synthesis and characterization of the new tetraazamacrocycle L, bearing two 1,1'-bis(2-phenol) groups as side-arms, is reported. The basicity behavior and the binding properties of L toward alkali metal ions were determined by means of potentiometric measurements in ethanol/water 50:50 (v/v) solution (298.1+/-0.1 K, I=0.15 mol dm(-3)). The anionic H(-1)L(-) species can be obtained in strong alkaline solution, indicating that not all of the acidic protons of L can be removed under the experimental conditions used. This species behaves as a tetraprotic base (log K(1)=11.22, log K(2)=9.45, log K(3)=7.07, log K(4)=5.08), and binds alkali metal ions to form neutral [MH(-1)L] complexes with the following stability constants: log K(Li)=3.92, log K(Na)=3.54, log K(K)=3.29, log K(Cs)=3.53. The arrangement of the acidic protons in the H(-1)L(-) species depends on the polarity of the solvents used, and at least one proton switches from the amine moiety to the aromatic part upon decreasing the polarity of the solvent. In this way two different binding areas, modulated by the polarity of solvents, are possible in L. One area is preferred by alkali metal ions in polar solvents, the second one is preferred in solvents with low polarity. Thus, the metal ion can switch from one location to the other in the ligand, modulated by the polarity of the environment. A strong hydrogen-bonding network should preorganize the ligand for coordination, as confirmed by MD simulations. The crystal structure of the [Na(H(-1)L)].CH(3)CN complex (space group P2(1)/c, a=12.805(1), b=20.205(3), c=14.170(2) A, beta=100.77(1) degrees, V=3601.6(8) A(3), Z=4, R=0.0430, wR2=0.1181), obtained using CH(2)Cl(2)/CH(3)CN as mixed solvent, supports this last aspect and shows one of the proposed binding areas.  相似文献   

15.
Alumatranes, tricyclic neutral molecules featuring a transannular N --> Al bond, can act as Lewis acids that activate substrates in the axial coordination site. Treatment of tris(2-hydroxy-3,5-dimethylbenzyl)amine with AlMe(3) afforded dimeric (AlL)(2) 1 [wherein L = tris(2-oxy-3,5-dimethylbenzyl)amine]. X-ray diffraction analysis revealed bridging between AlL monomers by two Al-O bonds. Reactions of 1 with substrates containing O or N donors generated the alumatranes THF-AlL 2, PhCHO-AlL 3, H(2)NCH(2)CH(2)NH(2)-AlL 4, and [PhO-AlL](-) 5, in which the apical added ligand on the five-coordinate aluminum center causes variation in the transannular bond distance. Water coordinates with 1 at -20 degrees C to form the alumatrane H(2)O-AlL 6 that undergoes partial hydrolysis at room temperature to produce 7, which X-ray crystallography showed to be composed of four AlL fragments linked by an (H(2)O)(2)(HO)(2)Al(OH)(2)Al(OH)(2)(H(2)O)(2) framework in which the O(4)AlO(2)AlO(4) moiety is of local D(2)(h)() symmetry. According to X-ray analysis, 7 can crystallize in at least two polymorphic modifications: triclinic 7a and monoclinic 7b. The reaction of 3 with water also generated 6 and 7, depending on the reaction temperature. Dimeric 1 was found to promote the reaction of benzaldehyde with trimethylsilyl cyanide at room temperature to provide 2-trimethylsilyoxyphenylacetonitrile in 95% yield.  相似文献   

16.
The monomeric titanium(IV) hydroxide complex, LTi(OH)(LH(3)= tris(2-hydroxy-3,5-di-tert-butylbenzyl)amine), which is sterically inhibited from condensation to a mu-oxo dimer, cannot be prepared by hydrolysis of the alkoxide, with K(eq)= 0.012 for hydrolysis of the titanium methoxide in THF.  相似文献   

17.
Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.  相似文献   

18.
The synthesis of a new, more water soluble derivative of TREN-Me-3,2-HOPO (tris[(3-hydroxy-1-methyl-2-oxo-1,2- didehydropyridine-4-carboxamido)ethyl]amine) is presented. The synthesis starts with the condensation reaction of (N-methoxyethylamino)acetonitrile hydrochloride and oxalyl chloride to give 3,5-dichloro-N-(methoxyethyl)-2(1H)-pyrazinone. The 3-position is readily substituted with a benzyloxy group, and the pyrazinone is converted to ethyl 3-(benzyloxy)-N-(methoxyethyl)-2(1H)-pyridinone-4-carboxylate by a Diels-Alder cycloaddition with ethyl propiolate. Basic deprotection of the ester followed by activation, coupling to tren, and acidic deprotection of the benzyl groups gives the ligand TREN-MOE-3,2-HOPO (tris[(3-hydroxy-1-(methoxyethyl)- 2-oxo-1,2-didehydropyridine-4-carboxamido)ethyl]amine). The gadolinium complex of TREN-MOE-3,2-HOPO was prepared by metathesis, starting from gadolinium chloride. The solubility of the new metal complex is significantly enhanced. The four protonation constants (determined by potentiometry) for TREN-MOE-3,2-HOPO (log Ka1 = 8.08, log Ka2 = 6.85, log Ka3 = 5.81, log Ka4 = 4.98) are virtually identical to those reported for the parent ligand. The stability constants for the gadolinium complex of TREN-MOE-3,2-HOPO determined by potentiometry (log beta 110 = 19.69(2), log beta 111 = 22.80(2)) and by spectrophotometry (log beta 110 = 19.80(1), log beta 111 = 22.88(1), log beta 112 = 25.88(1)) differ slightly from those for the parent ligand; this follows from a change in the complexation model in which a new diprotonated species, [Gd(TREN-MOE-3,2-HOPO)(H)2]2+, was included. The presence of this extra species was demonstrated by factor analysis, comparison of spectral data, and nonlinear least-squares refinement. Significant formation of this species is observed between pH 3 and pH 1.5.  相似文献   

19.
Choi SY  Yoshida Z  Ohashi K 《Talanta》2002,56(4):689-697
This work performed fundamental studies for the extraction of gallium(III) with 2-methyl-8-quinolinol (HMQ) and 2-methyl-5-butyloxymethyl-8-quinolinol (HMO(4)Q) into supercritical carbon dioxide (SF-CO(2)) from a weakly acidic solution. The distribution constants of HMO(4)Q between aqueous and SF-CO(2) phases were determined at 45 degrees C, 8.6-20.4 MPa and I=0.1 M (H, Na)NO(3) (M=mol dm(-3)). At 45 degrees C and 15.7 MPa, gallium(III) was hardly extracted with HMQ into SF-CO(2), but was quantitatively extracted with HMO(4)Q in the pH range of 2.20-2.84. The extraction constant, K(ex, SF-CO(2)) (=[Ga(OH)(MO(4)Q)(2)](SF-CO(2))[H(+)](3)[Ga(3+)](-1)[HMO(4)Q](SF-CO(2))(-2)), of gallium(III) with HMO(4)Q was determined to be 10(-2.6+/-0.1) at 45 degrees C, 15.7 MPa and I=0.1 M (H, Na)NO(3), which was 63 times larger than that in heptane at 45 degrees C and 0.10 MPa. It was also found that the addition of 3,5-dichlorophenol as a synergist enhanced the extractability of gallium(III) with HMO(4)Q into SF-CO(2).  相似文献   

20.
Khosla MM  Singh SR  Rao SP 《Talanta》1974,21(6):411-415
A simple and rapid method is proposed for the separation of tervalent gallium, indium and thallium by solvent extraction with N-benzylaniline in chloroform from different concentrations of hydrochloric acid. Thallium and gallium are extracted from 1M and 7.0-7.5M hydrochloric acid respectively. Indium is finally extracted from hydriodic acid. These metals in the final extracts are determined complexometrically. Interference from some cations can easily be eliminated by reduction with sulphite, followed by selective oxidation of thallium(I) to thallium(III) with saturated bromine water, and from others by the use of thioglycollic acid as a masking agent in the extraction of gallium and indium. Most common anions cause no interference. Log-log plots of distribution coefficients vs. concentration of amine for gallium, indium and thallium indicate a 2:1 limiting mole ratio of amine to these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号