首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading and constraint conditions. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previous developments applied so far on isotropic homogeneous and isotropic interface cracks. The spatial variation of FGM material properties is taken into account at the level of element integration points. To validate the developed method, two- and three-dimensional mixed-mode fracture problems are selected from the literature for comparison. Two-dimensional cases include: inclined central crack in a large FGM medium under uniform tensile strain and stress loadings, a slanted crack in a finite-size FGM plate under exponentially varying tensile stress loading and an edge crack in a finite-size plate under shear traction load. The three-dimensional example models a deflected surface crack in a finite-size FGM plate under uniform tensile stress loading. Comparisons between current results and those from analytical and other numerical methods yield good agreement. Thus, it is concluded that the developed three-dimensional enriched finite elements are capable of accurately computing mixed-mode fracture parameters for cracks in FGMs.  相似文献   

2.
This article introduces a computational method based on the Jk-integral for mixed-mode fracture analysis of orthotropic functionally graded materials (FGMs) that are subjected to thermal stresses. The generalized definition of the Jk-integral is recast into a domain independent form composed of line and area integrals by utilizing the constitutive relations of plane orthotropic thermoelasticity. Implementation of the domain independent Jk-integral is realized through a numerical procedure developed by means of the finite element method. The outlined computational approach enables the evaluation of the modes I and II stress intensity factors, the energy release rate, and the T-stress. The developed technique is validated numerically by considering two different problems, the first of which is the problem of an embedded crack in an orthotropic FGM layer subjected to steady-state thermal stresses; and the second one is that of periodic cracks under transient thermal loading. Comparisons of the mixed-mode stress intensity factors evaluated by the Jk-integral based method to those calculated through the displacement correlation technique (DCT) and to those available in the literature point out that, the proposed form of the Jk-integral possesses the required domain independence and leads to numerical results of high accuracy. Further results are presented to illustrate the influences of the geometric and material constants on the thermal fracture parameters.  相似文献   

3.
This paper presents a transient dynamic crack analysis for a functionally graded material (FGM) by using a hypersingular time-domain boundary integral equation method. The spatial variations of the material parameters of the FGM are described by an exponential law. A numerical solution procedure is developed for solving the hypersingular time-domain traction BIE. To avoid the use of time-dependent Green’s functions which are not available for general FGM, a convolution quadrature formula is adopted for approximating the temporal convolution, while a Galerkin method is applied for the spatial discretization of the hypersingular time-domain traction BIE. Numerical results for the transient dynamic stress intensity factors for a finite crack in an infinite and linear elastic FGM subjected to an impact anti-plane crack-face loading are presented and discussed. The effects of the material gradients of the FGM on the transient dynamic stress intensity factors and their dynamic overshoot over the corresponding static stress intensity factors are analyzed.  相似文献   

4.
5.
In this work, a self-consistent constitutive framework is proposed to describe the behaviour of a generic three-layered system containing a functionally graded material (FGM) layer subjected to thermal loading. Analytical and semi-analytical solutions are obtained to describe the thermo-elastic and thermo-elastoplastic behaviour of a three-layered system consisting of a metallic and a ceramic layer joined together by an FGM layer of arbitrary composition profile. Solutions for the stress distributions in a generic FGM system subjected to arbitrary temperature transient conditions are presented. The homogenisation of the local elastoplastic FGM behaviour in terms of the properties of its individual phases is performed using a self-consistent approach. In this work, power-law strain hardening behaviour is assumed for the FGM metallic phase. The stress distributions within the FGM systems are compared with accurate numerical solutions obtained from finite element analyses and good agreement is found throughout. Solutions are also given for the critical temperature transients required for the onset of plastic deformation within the three-layered systems.  相似文献   

6.
In the present paper, the behavior of an interface crack for a homogeneous orthotropic strip sandwiched between two different functionally graded orthotropic materials subjected to thermal and mechanical loading is considered. It is assumed that interface crack is partly insulated, and the temperature drop across the crack surfaces is the result of the thermal resistance due to the heat conduction through the crack region. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The complicated mixed boundary problems of equations of heat conduction and elasticity are converted analytically into singular integral equations, which are solved numerically. The main objective of the paper is to study the effects of material nonhomogeneity parameters and the dimensionless thermal resistance on the thermal stress intensity factors for the purpose of gaining better understanding of the thermal behavior of graded layer.  相似文献   

7.
A three-dimensional enriched finite-element methodology is presented to compute stress intensity factors for three-dimensional cracks contained in functionally graded materials (FGMs). A general-purpose 3D finite-element based fracture analysis program, FRAC3D, is enhanced to include this capability. First, using available solutions from the literature, comparisons have been made in terms of stresses under different loading conditions, such as uniform tensile, bending and thermal loads. Mesh refinement studies are also performed. The fracture solutions are obtained for edge cracks in an FGM strip and surface cracks in a finite-thickness FGM plate and compared with existing solutions in the literature. Further analyses are performed to study the behavior of stress intensity factor near the free surface where crack front terminates. It is shown that three-dimensional enriched finite elements provide accurate and efficient fracture solutions for three-dimensional cracks contained in functionally graded materials.  相似文献   

8.
In this paper, the plane elasticity problem of an arbitrarily oriented crack in a FGM layer bonded to a homogeneous half-plane is considered. The problem is modeled by assuming that the elastic properties of the FGM layer are exponential functions of the thickness coordinate and are continuous at the interface of the FGM layer and the half-plane.The Fourier transform technique is used to reduce the problem to the solution of a system of Cauchy-type singular integral equations, which are solved numerically. The stress intensity factors are computed for various crack orientations, crack locations and material parameters. The results show that crack length, crack orientation and the non-homogeneity parameter of the strip material have significant effect on the fracture of the FGM layer.  相似文献   

9.
Vera Petrova  Tomasz Sadowski 《Meccanica》2014,49(11):2603-2615
The present investigation is devoted to a problem of the interaction of two edge cracks inclined arbitrary to the boundary of a non-homogeneous half-plane, which is a functionally graded layer on a homogeneous substrate. The functionally graded properties vary exponentially in thickness direction. One cycle of cooling from sintering temperature is considered. An approach based on integral equations is used and a solution is obtained, then the stress intensity factors are calculated and direction of the initial crack propagation is evaluated by using the maximum circumferential stress criterion. Influence of geometrical and material (inhomogeneity) parameters on the fracture characteristics is investigated. This study can serve as a part of the modeling of the fracture process in FGM coatings under cyclic heating–cooling thermal loading.  相似文献   

10.
11.
In this paper, a finite crack with constant length (Yoffe type crack) propagating in a functionally graded coating with spatially varying elastic properties bonded to a homogeneous substrate of finite thickness under anti-plane loading was studied. A multi-layered model is employed to model arbitrary variations of material properties based on two linearly-distributed material compliance parameters. The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. Some numerical examples are given to demonstrate the accuracy, efficiency and versatility of the model. The numerical results show that the graded parameters, the thicknesses of the interfacial layer and the two homogeneous layers, the crack size and speed have significant effects on the dynamic fracture behavior.  相似文献   

12.
This paper presents an analytical investigation on the buckling analysis of symmetric sandwich plates with functionally graded material (FGM) face sheets resting on an elastic foundation based on the first-order shear deformation plate theory (FSDT) and subjected to mechanical, thermal and thermo-mechanical loads. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. An analytical approach is used to reduce the governing equations of stability and then solved using an analytical solution which is named as power series Frobenius method for symmetric sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of the plate aspect ratio, side-to-thickness ratio, loading type, sandwich plate type, volume fraction index, elastic foundation coefficients and boundary conditions on the buckling response of FGM sandwich plates. This has not been done before and serves to fill the gap of knowledge in this area.  相似文献   

13.
In this paper, a problem of a crack in an orthotropic strip is studied under plane strain conditions. It is assumed that normal displacements and shear stresses do not act on neither of the boundaries of the strip. Cauchy-type singular integral equation for the crack problem is derived by using the theory of plane elasticity and the Fourier transformation technique. A quadrature collocation approach is adopted for the numerical solutions of the singular integral equation. The effect of relative thickness and mechanical properties of strip on Mode I stress intensity factors (SIFs) are examined under different loading conditions. Some sample results are given for SIFs; also, material orthotropy and geometrical effects are discussed in detail.  相似文献   

14.
The paper addresses a fracture problem for an orthotropic cracked plate made of a material with different tensile and compressive strengths and subjected to biaxial loading. The problem is solved using a micromechanical fracture model proposed earlier by the authors. It is assumed that the fracture of the material in the fracture process zones at the crack front is described by the Gol’denblat–Kopnov failure criterion. Strength curves for an orthotropic cracked plate with different strength and fracture-toughness parameters are plotted  相似文献   

15.
This paper has twofold aims. One is to study the dynamic response of a magnetoelectroelastic half-space with functionally graded coating containing crack at the interface when subjected to sudden impacts. Two different loading positions, where the material and crack surfaces are loaded respectively, are considered. By using the integral transform method, the problem is reduced to solving singular integral equations. Obtained numerical results show that the overshoots of dynamic fracture parameters are strongly amplified or reduced depending on negative or positive gradient, respectively for the case of the material surface being loaded suddenly. This implies that a functionally graded coating with a positive gradient index is preferable in engineering design due to its capability of preventing the structure from cracking. The second objective is to give a comparison of relevant dynamic parameters such as the intensity factors of stress and strain, energy release rate, and energy density factor, and their features are elucidated under dynamic combined loadings. It indicates that the strain intensity factor can overcome the drawbacks of the rest parameters, and may be chosen as an effective fracture parameter, while three others cannot be adopted as fracture criteria to describe the feature of onset of crack growth.  相似文献   

16.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   

17.
The stress field and fracture propagation due to thermal loading in multi-layered and/or functionally graded composite materials are extensively analysed. Regarding fracture, we have focused the attention on delamination between the layers due to brittle or fatigue thermally induced crack propagations. The statically indeterminate stress analysis is solved coupling equilibrium, compatibility and constitutive equations. Fracture analysis is based on the classical Griffith’s criterion rewritten for composite structures under thermal loading. As an example, a two-layer prismatic structure is considered, each layer being composed by a different functionally graded material. The solution is particularized for the case of a linear grading. The size and shape effects are discussed and an optimization procedure is proposed. A numerical application of the findings to hard metal and diamond based cutters concludes the paper.  相似文献   

18.
动态载荷下功能梯度复合材料的圆币形裂纹问题   总被引:4,自引:0,他引:4  
研究了动态载荷下功能梯度材料中的圆币形裂纹问题.假设材料为横观各向同性,并且含有多个垂直于厚度方向的裂纹,材料参数沿轴向(与裂纹面垂直的方向)为变化的,沿该方向将材料划分为许多单层,各单层材料参数为常数,利用Hankel变换祛,在Laplace域内推导出了控制问题的对偶积分方程组.利用Laplace数值反演,得出了裂纹尖端的动态应力强度因子和能量释放率.研究了含两个裂纹的功能梯度接头结构,分析了材料非均匀性参数对应力强度因子和能量释放率的影响.  相似文献   

19.
A channeling crack confined in an orthotropic film bonded to an orthotropic substrate under a steady-state condition is investigated. The problem is formulated based on a modified Stroh formalism and an orthotropy rescaling technique, in order to determine the necessary material parameters required to describe the steady-state energy release rate. A closed form of the energy release rate is obtained with the exception of the normalized energy release rate for the transformed bimaterial structure that consists of the orthotropic film and isotropic substrate. The normalized energy release rates for the transformed problem are shown to depend on only four material parameters and are numerically calculated using finite element analyses. The periodic channels in the film layer of the bimaterial structure are also considered. The steady-state energy release rates for the periodic channeling cracks are obtained as a function of the ratio of the film thickness to the crack spacing for various combinations of the material parameters.  相似文献   

20.
Compared to quasi-static loading concrete loaded by higher loading rates acts in a different way. There is an influence of strain-rate and inertia on resistance, failure mode and crack pattern. With increase of loading rate failure mode changes from mode-I to mixed mode. Moreover, theoretical and numerical investigations indicate that after the crack reaches critical velocity there is progressive increase of resistance and crack branching. These phenomena have recently been demonstrated and discussed by O?bolt et al. (2011) on numerical study of compact tension specimen (CTS) loaded by different loading rates. The aim of the present paper is to experimentally verify the results obtained numerically. Therefore, the tests and additional numerical studies on CTS are carried out. The experiments fully confirm the results of numerical prediction discussed in O?bolt et al. (2011). The same as in the numerical study it is shown that for strain rates lower than approximately 50/s the structural response is controlled by the rate dependent constitutive law, however, for higher strain rates crack branching and progressive increase of resistance is observed. This is attributed to structural inertia and not the rate dependent strength of concrete. Maximum crack velocity of approximately 800 m/s is measured before initiation of crack branching. The comparison between numerical and experimental results shows that relatively simple modeling approach based on continuum mechanics, rate dependent microplane model and standard finite elements is capable to realistically predict complex phenomena related to dynamic fracture of concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号